Apache Fury 反序列化 InputStream 问题分析与解决方案
2025-06-25 19:16:28作者:牧宁李
问题背景
Apache Fury 是一个高性能的序列化框架,但在使用过程中发现了一个关于 InputStream 反序列化的兼容性问题。当开发者尝试从 ByteArrayInputStream 或其他 InputStream 反序列化对象时,会遇到"Unsupported coder 111"或"IllegalArgumentException"等异常。
问题重现
通过一个简单的测试用例可以重现这个问题:
- 使用 Fury 序列化一个简单的 Java 对象
- 尝试通过三种方式反序列化:
- 直接使用字节数组 - 成功
- 使用 ByteArrayInputStream - 抛出 UnsupportedOperationException
- 使用 BufferedInputStream 包装的 ByteArrayInputStream - 抛出 IllegalArgumentException
问题根源
经过分析,这个问题源于 Fury 序列化输出流和字节数组两种方式的差异:
- 序列化到 OutputStream 时:Fury 会在数据前写入对象的大小信息
- 序列化到字节数组时:不包含这个大小信息
当尝试用 deserializeJavaObject(InputStream) 方法反序列化来自 serializeJavaObject(Object) 的数据时,由于缺少预期的长度前缀,导致解析失败。
当前解决方案
目前有两种临时解决方案:
- 手动添加长度前缀:在字节数组前添加4字节的长度信息
- 保持序列化和反序列化方式一致:
- 序列化使用
serializeJavaObject(OutputStream, Object) - 反序列化使用
deserializeJavaObject(InputStream, Class)
- 序列化使用
未来改进方向
Fury 社区已经意识到这个问题,并计划从以下几个方面进行改进:
- 原生流式反序列化支持:让 MemoryBuffer 能够持有读取通道或输入流对象
- 零拷贝优化:特别针对大对象和大数据处理场景
- API 一致性:统一不同序列化/反序列化方式的行为
性能考量
值得注意的是,Fury 当前的设计选择是基于性能考虑:
- 避免多态设计 MemoryBuffer 以保持方法调用的高效性
- 对小对象场景优化,牺牲了部分流式处理的便利性
但随着大数据和机器学习应用的普及,对大对象的流式处理需求日益增长,这使得改进流式反序列化支持变得尤为重要。
总结
这个问题反映了序列化框架在流式处理和批处理之间的权衡。开发者在使用时需要注意序列化和反序列化方法的配对使用,而 Fury 社区也正在努力提供更统一和高效的流式处理支持。对于性能敏感的应用,目前建议使用字节数组方式或确保输入输出流配对使用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896