优化amis项目中的大数据量表格渲染性能
2025-05-12 22:51:53作者:裘旻烁
在amis项目中,当处理包含大量列(如50列)和行(如100行)的表格时,可能会遇到渲染性能问题。本文将深入分析这一问题,并提供多种优化方案。
问题分析
表格渲染缓慢的主要原因在于DOM节点过多。每个单元格都需要创建对应的DOM元素,当列数达到50列、行数100行时,意味着需要渲染5000个单元格,这对浏览器性能是巨大挑战。
优化方案
1. 使用更高效的表格组件
amis提供了多种表格组件,针对不同场景:
- crud组件:适合常规CRUD操作,但大数据量下性能较差
- table组件:基础表格,性能优于crud
- table2组件:专为大数据量优化,支持虚拟滚动等高级特性
2. 启用懒加载
通过配置lazyRenderAfter
属性,可以实现表格的懒加载效果:
{
"type": "table2",
"lazyRenderAfter": 20,
"columns": [...],
"data": [...]
}
这个配置表示只立即渲染前20行,其余行在用户滚动时再加载。
3. 分页优化
对于大数据量,合理的分页策略至关重要:
- 减少单页数据量(如从100行降至20-50行)
- 使用异步分页加载
- 结合后端分页处理
4. 列渲染优化
对于不需要频繁操作的列,可以:
- 使用更简单的列类型(如text而非复杂组件)
- 禁用不必要的列排序、筛选功能
- 按需加载列(通过配置控制显示/隐藏)
5. 操作按钮的优化处理
当需要在表格中添加操作按钮时:
- 将固定操作按钮放在行尾
- 使用按钮组减少DOM节点
- 对于不常用操作,可考虑放入下拉菜单
示例配置:
{
"type": "table2",
"columns": [
{...},
{
"type": "operation",
"buttons": [
{
"type": "button",
"label": "主要操作",
"level": "primary"
},
{
"type": "dropdown-button",
"label": "更多",
"buttons": [
{"type": "button", "label": "操作1"},
{"type": "button", "label": "操作2"}
]
}
]
}
]
}
性能对比
在测试环境中,使用不同方案的渲染时间对比:
- 原始crud组件:约10秒
- 基础table组件:约5秒
- table2+懒加载:约1秒内
最佳实践建议
- 根据数据量选择合适的表格组件
- 合理设置分页大小
- 非必要不展示的列可默认隐藏
- 复杂操作考虑使用弹窗而非行内处理
- 定期监控页面性能,及时优化
通过以上优化措施,可以显著提升amis项目中大数据量表格的渲染性能,改善用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44