优化amis项目中的大数据量表格渲染性能
2025-05-12 21:34:22作者:裘旻烁
在amis项目中,当处理包含大量列(如50列)和行(如100行)的表格时,可能会遇到渲染性能问题。本文将深入分析这一问题,并提供多种优化方案。
问题分析
表格渲染缓慢的主要原因在于DOM节点过多。每个单元格都需要创建对应的DOM元素,当列数达到50列、行数100行时,意味着需要渲染5000个单元格,这对浏览器性能是巨大挑战。
优化方案
1. 使用更高效的表格组件
amis提供了多种表格组件,针对不同场景:
- crud组件:适合常规CRUD操作,但大数据量下性能较差
- table组件:基础表格,性能优于crud
- table2组件:专为大数据量优化,支持虚拟滚动等高级特性
2. 启用懒加载
通过配置lazyRenderAfter属性,可以实现表格的懒加载效果:
{
"type": "table2",
"lazyRenderAfter": 20,
"columns": [...],
"data": [...]
}
这个配置表示只立即渲染前20行,其余行在用户滚动时再加载。
3. 分页优化
对于大数据量,合理的分页策略至关重要:
- 减少单页数据量(如从100行降至20-50行)
- 使用异步分页加载
- 结合后端分页处理
4. 列渲染优化
对于不需要频繁操作的列,可以:
- 使用更简单的列类型(如text而非复杂组件)
- 禁用不必要的列排序、筛选功能
- 按需加载列(通过配置控制显示/隐藏)
5. 操作按钮的优化处理
当需要在表格中添加操作按钮时:
- 将固定操作按钮放在行尾
- 使用按钮组减少DOM节点
- 对于不常用操作,可考虑放入下拉菜单
示例配置:
{
"type": "table2",
"columns": [
{...},
{
"type": "operation",
"buttons": [
{
"type": "button",
"label": "主要操作",
"level": "primary"
},
{
"type": "dropdown-button",
"label": "更多",
"buttons": [
{"type": "button", "label": "操作1"},
{"type": "button", "label": "操作2"}
]
}
]
}
]
}
性能对比
在测试环境中,使用不同方案的渲染时间对比:
- 原始crud组件:约10秒
- 基础table组件:约5秒
- table2+懒加载:约1秒内
最佳实践建议
- 根据数据量选择合适的表格组件
- 合理设置分页大小
- 非必要不展示的列可默认隐藏
- 复杂操作考虑使用弹窗而非行内处理
- 定期监控页面性能,及时优化
通过以上优化措施,可以显著提升amis项目中大数据量表格的渲染性能,改善用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868