优化amis项目中的大数据量表格渲染性能
2025-05-12 21:49:14作者:裘旻烁
在amis项目中,当处理包含大量列(如50列)和行(如100行)的表格时,可能会遇到渲染性能问题。本文将深入分析这一问题,并提供多种优化方案。
问题分析
表格渲染缓慢的主要原因在于DOM节点过多。每个单元格都需要创建对应的DOM元素,当列数达到50列、行数100行时,意味着需要渲染5000个单元格,这对浏览器性能是巨大挑战。
优化方案
1. 使用更高效的表格组件
amis提供了多种表格组件,针对不同场景:
- crud组件:适合常规CRUD操作,但大数据量下性能较差
- table组件:基础表格,性能优于crud
- table2组件:专为大数据量优化,支持虚拟滚动等高级特性
2. 启用懒加载
通过配置lazyRenderAfter属性,可以实现表格的懒加载效果:
{
"type": "table2",
"lazyRenderAfter": 20,
"columns": [...],
"data": [...]
}
这个配置表示只立即渲染前20行,其余行在用户滚动时再加载。
3. 分页优化
对于大数据量,合理的分页策略至关重要:
- 减少单页数据量(如从100行降至20-50行)
- 使用异步分页加载
- 结合后端分页处理
4. 列渲染优化
对于不需要频繁操作的列,可以:
- 使用更简单的列类型(如text而非复杂组件)
- 禁用不必要的列排序、筛选功能
- 按需加载列(通过配置控制显示/隐藏)
5. 操作按钮的优化处理
当需要在表格中添加操作按钮时:
- 将固定操作按钮放在行尾
- 使用按钮组减少DOM节点
- 对于不常用操作,可考虑放入下拉菜单
示例配置:
{
"type": "table2",
"columns": [
{...},
{
"type": "operation",
"buttons": [
{
"type": "button",
"label": "主要操作",
"level": "primary"
},
{
"type": "dropdown-button",
"label": "更多",
"buttons": [
{"type": "button", "label": "操作1"},
{"type": "button", "label": "操作2"}
]
}
]
}
]
}
性能对比
在测试环境中,使用不同方案的渲染时间对比:
- 原始crud组件:约10秒
- 基础table组件:约5秒
- table2+懒加载:约1秒内
最佳实践建议
- 根据数据量选择合适的表格组件
- 合理设置分页大小
- 非必要不展示的列可默认隐藏
- 复杂操作考虑使用弹窗而非行内处理
- 定期监控页面性能,及时优化
通过以上优化措施,可以显著提升amis项目中大数据量表格的渲染性能,改善用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
213
226
暂无简介
Dart
659
150
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
293
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
489
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
79
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1