【亲测免费】 HoVer-Net:同时进行核实例分割与分类的开源项目教程
1、项目介绍
HoVer-Net 是一个高度创新的深度学习模型,专为同时在H&E染色的病理图像中执行核实例分割和分类而设计。该模型通过利用每个核像素与其质心的水平和垂直距离来有效地分离聚类细胞,并采用专门的上采样分支来对每一个分割出的核实例进行类型预测。HoVer-Net的官方实现基于PyTorch框架,提供了一个强大的工具,支持在多种组织类型的Histology图像上的训练与应用。
该项目不仅包括模型代码,还提供了预训练权重,这些权重经过CoNSeP、PanNuke、MoNuSAC、Kumar和CPM17等多个数据集的训练。此外,它还兼容TensorFlow的原始版本,并且有一个转换脚本,用于将旧有的TensorFlow模型权重转化为PyTorch支持的格式。
2、项目快速启动
首先,确保你的环境满足开发需求:
conda env create -f environment.yml
conda activate hovernet
pip install torch==1.6.0 torchvision==0.7.0
接下来,为了快速启动,你需要设置数据路径和配置文件中的其他必要信息,然后运行训练脚本或推理脚本。例如,若要查看训练数据的增广效果,可以执行:
python run_train.py --view=train
如果你想立即开始训练模型,使用指定GPU:
python run_train.py --gpu='0,1'
对于推断处理,指定模型路径和GPU:
python run_infer.py --model_path=path/to/checkpoint.pth --gpu=0
记得替换path/to/checkpoint.pth为你选择的预训练模型路径。
3、应用案例和最佳实践
应用案例
HoVer-Net广泛应用于病理学研究,特别是癌症诊断和治疗评估。它能够帮助研究人员高效地识别和分析不同类型的肿瘤细胞,从而加速疾病的诊断流程。
最佳实践
- 数据准备:使用
extract_patches.py正确提取并组织训练数据。 - 模型调优:根据具体任务调整模型参数,如学习率、批次大小等,在
models/hovernet/opt.py中进行。 - 验证与测试:定期用未见过的数据验证模型性能,确保泛化能力。
- 可视化:利用
--view选项在训练过程中可视化结果,以监控学习过程和数据增强效果。
4、典型生态项目
虽然HoVer-Net本身构成了核心组件,但其在医疗图像分析领域内激发了多个衍生项目和应用,包括但不限于集成到医疗影像分析工作流的工具和平台中。开发者和研究者可以利用HoVer-Net的功能,结合OpenSlide或其他WSI(全片扫描)处理器,构建起更加复杂的病理分析系统。例如,将HoVer-Net集成到QuPath这样的开源数字病理软件中,可以提升细胞检测和分类的自动化程度,促进临床决策。
通过以上步骤,你可以快速地开始使用HoVer-Net,无论是用于学术研究还是产品开发。这个项目不仅简化了复杂病理图像分析的过程,而且鼓励了医学成像技术的进步和创新。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00