SXT Proof of SQL项目v0.72.7版本发布:验证构建器功能增强
SXT Proof of SQL是一个专注于SQL查询验证的开源项目,它通过零知识证明技术为数据库查询结果提供可验证性。该项目的最新版本v0.72.7带来了验证构建器(VerificationBuilder)功能的重要增强,为开发者提供了更强大的工具来构建和管理验证流程。
验证构建器功能扩展
新版本中,验证构建器库新增了多个关键方法,显著提升了验证流程的灵活性和可控性:
-
内存分配管理:新增的
builder_allocate
方法为验证过程提供了更精细的内存控制能力,开发者可以按需分配资源,优化验证性能。 -
挑战管理机制:通过
builder_set_challenges
和builder_consume_challenge
方法,验证流程现在可以更有效地设置和处理挑战值。这对基于交互式证明的验证系统尤为重要,能够确保验证过程的随机性和安全性。 -
χ评估处理:新增的
builder_set_chi_evaluations
和builder_consume_chi_evaluation
方法专门用于处理多项式评估过程中的χ值。这些方法简化了多项式承诺方案中的关键计算步骤,使验证过程更加高效。 -
最终轮MLE管理:
builder_set_final_round_mles
和builder_consume_final_round_mle
方法针对多线性扩展(MLE)的最后阶段提供了专门支持。这对实现高效的零知识证明验证至关重要,特别是在处理大规模数据时。
技术意义与应用价值
这些新功能的加入使得SXT Proof of SQL项目在以下几个方面得到显著提升:
- 模块化设计:通过分离验证流程的不同阶段,代码结构更加清晰,便于维护和扩展。
- 性能优化:细粒度的资源管理可以减少不必要的内存分配,提高验证效率。
- 安全性增强:专门的挑战值管理机制有助于构建更健壮的安全证明系统。
- 开发者友好:清晰的接口设计降低了使用门槛,使开发者能够更轻松地集成验证功能。
对于需要验证SQL查询结果的区块链应用或分布式系统,这些改进意味着更高的效率和更好的用户体验。开发者现在可以更灵活地控制验证流程,根据具体需求调整资源分配和处理策略。
随着零知识证明技术在数据库领域的应用日益广泛,SXT Proof of SQL项目的这些更新为构建可验证的数据处理系统提供了重要工具。未来版本可能会在此基础上进一步优化性能,增加更多验证算法支持,推动可验证计算在真实业务场景中的落地应用。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









