SXT Proof of SQL项目v0.72.7版本发布:验证构建器功能增强
SXT Proof of SQL是一个专注于SQL查询验证的开源项目,它通过零知识证明技术为数据库查询结果提供可验证性。该项目的最新版本v0.72.7带来了验证构建器(VerificationBuilder)功能的重要增强,为开发者提供了更强大的工具来构建和管理验证流程。
验证构建器功能扩展
新版本中,验证构建器库新增了多个关键方法,显著提升了验证流程的灵活性和可控性:
-
内存分配管理:新增的
builder_allocate
方法为验证过程提供了更精细的内存控制能力,开发者可以按需分配资源,优化验证性能。 -
挑战管理机制:通过
builder_set_challenges
和builder_consume_challenge
方法,验证流程现在可以更有效地设置和处理挑战值。这对基于交互式证明的验证系统尤为重要,能够确保验证过程的随机性和安全性。 -
χ评估处理:新增的
builder_set_chi_evaluations
和builder_consume_chi_evaluation
方法专门用于处理多项式评估过程中的χ值。这些方法简化了多项式承诺方案中的关键计算步骤,使验证过程更加高效。 -
最终轮MLE管理:
builder_set_final_round_mles
和builder_consume_final_round_mle
方法针对多线性扩展(MLE)的最后阶段提供了专门支持。这对实现高效的零知识证明验证至关重要,特别是在处理大规模数据时。
技术意义与应用价值
这些新功能的加入使得SXT Proof of SQL项目在以下几个方面得到显著提升:
- 模块化设计:通过分离验证流程的不同阶段,代码结构更加清晰,便于维护和扩展。
- 性能优化:细粒度的资源管理可以减少不必要的内存分配,提高验证效率。
- 安全性增强:专门的挑战值管理机制有助于构建更健壮的安全证明系统。
- 开发者友好:清晰的接口设计降低了使用门槛,使开发者能够更轻松地集成验证功能。
对于需要验证SQL查询结果的区块链应用或分布式系统,这些改进意味着更高的效率和更好的用户体验。开发者现在可以更灵活地控制验证流程,根据具体需求调整资源分配和处理策略。
随着零知识证明技术在数据库领域的应用日益广泛,SXT Proof of SQL项目的这些更新为构建可验证的数据处理系统提供了重要工具。未来版本可能会在此基础上进一步优化性能,增加更多验证算法支持,推动可验证计算在真实业务场景中的落地应用。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









