GimmeMotifs 技术文档
2024-12-20 20:53:51作者:滑思眉Philip
1. 安装指南
1.1 使用 Conda 安装
GimmeMotifs 推荐使用 Conda 进行安装,特别是通过 Bioconda 渠道。如果你还没有使用过 Bioconda,首先需要设置必要的频道。你只需要执行一次以下命令:
$ conda config --add channels defaults
$ conda config --add channels bioconda
$ conda config --add channels conda-forge
设置完成后,你可以通过以下命令安装 GimmeMotifs:
# 创建一个名为 gimme 的环境,并安装所有依赖
$ conda create -n gimme python=3 gimmemotifs
# 激活环境
$ conda activate gimme
注意:从版本 0.13.0 开始,GimmeMotifs 仅支持 Python 3。每次使用 GimmeMotifs 时,请确保激活环境 conda activate gimme。
1.2 其他安装方式
你也可以通过 PyPI 安装 GimmeMotifs:
$ pip install gimmemotifs
2. 项目使用说明
2.1 预测 de novo motifs
你可以使用 GimmeMotifs 预测 de novo motifs。以下是一个简单的示例:
$ gimme motifs my_peaks.bed my_motifs -g /data/genomes/hg38/hg38.fa --denovo
2.2 下载基因组
GimmeMotifs 可以使用通过 genomepy 安装的基因组。你可以通过以下命令下载基因组:
$ genomepy install hg38 --annotation # 需要 genomepy >=0.9.0
下载完成后,你可以通过基因组名称指定基因组:
$ gimme motifs my_peaks.bed -g hg38 -n my_motifs
3. 项目 API 使用文档
GimmeMotifs 提供了 Python API,你可以在 Jupyter Notebook 中交互式地尝试这些 API。以下是一个简单的 API 示例:
from gimmemotifs import Motif
# 创建一个 Motif 对象
motif = Motif("example_motif")
# 进行一些操作
motif.predict("my_peaks.bed", genome="hg38", output="my_motifs")
更多 API 使用示例和详细文档,请参考 GimmeMotifs 的官方文档。
4. 项目安装方式
GimmeMotifs 支持多种安装方式,包括 Conda、PyPI 等。推荐使用 Conda 进行安装,因为它可以自动处理依赖关系。
4.1 Conda 安装
$ conda create -n gimme python=3 gimmemotifs
$ conda activate gimme
4.2 PyPI 安装
$ pip install gimmemotifs
通过以上步骤,你可以顺利安装并使用 GimmeMotifs 进行 motif 分析。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
200
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694