Formio.js 数据网格中的日期验证实践
在表单开发中,日期验证是一个常见但容易出错的需求。本文将以 Formio.js 项目为例,详细介绍如何在数据网格(Data Grid)中实现复杂的日期验证逻辑,包括行内日期范围验证和跨行累计时长验证。
核心需求分析
在实际业务场景中,特别是处理工作经历、教育背景等需要时间轴记录的表单时,我们通常需要实现以下两种验证:
- 行内验证:确保每行的结束日期晚于开始日期
- 跨行累计验证:确保所有记录的总时长满足最低要求(如至少3年工作经验)
实现方案详解
1. 行内日期范围验证
在 Formio.js 的编辑网格(Edit Grid)组件中,我们可以通过两种方式实现行内验证:
方法一:禁用无效日期
通过设置日期组件的 disableFunction 属性,可以动态禁用不符合条件的日期:
"disableFunction": "moment(date).isBefore(row.startDate)"
这段代码会禁用所有早于开始日期的日期选项,从源头上防止用户选择无效日期。
方法二:自定义验证逻辑
同时,我们还需要添加显式的验证逻辑来处理可能的直接输入情况:
"validate": {
"custom": "const start = moment(row.startDate, 'YYYY-MM-DD');
const end = moment(input, 'YYYY-MM-DD');
if (!start.isValid() || !end.isValid()) {
valid = true;
} else if (!end.isAfter(start)) {
valid = 'End date must be after start date.';
} else {
valid = true;
}"
}
这段验证代码会检查结束日期是否确实晚于开始日期,否则返回错误提示。
2. 跨行累计时长验证
对于需要计算所有行累计时长的需求,我们需要在网格组件的顶级添加自定义验证:
"validate": {
"custom": "let totalMonths = 0;
if (data.employmentHistory && Array.isArray(data.employmentHistory)) {
data.employmentHistory.forEach(row => {
const start = moment(row.startDate, 'YYYY-MM-DD');
const end = moment(row.endDate, 'YYYY-MM-DD');
if (start.isValid() && end.isValid() && end.isAfter(start)) {
const duration = end.diff(start, 'months', true);
totalMonths += duration;
}
});
}
const totalYears = totalMonths / 12;
if (totalYears < 3) {
valid = 'Total experience must be at least 3 years.';
} else {
valid = true;
}"
}
这段代码实现了:
- 遍历所有工作经历记录
- 对每条有效记录计算工作月数
- 累计所有月数并转换为年数
- 验证是否满足最低3年要求
技术要点解析
-
Moment.js 集成:Formio.js 内置了 Moment.js 库,可以直接使用其强大的日期处理功能。
-
数据访问方式:
- 行内数据通过
row对象访问 - 整个网格数据通过
data.employmentHistory访问
- 行内数据通过
-
验证时机:Formio.js 会在用户交互时自动触发验证逻辑,确保实时反馈。
-
错误处理:验证逻辑中需要包含对无效日期的容错处理,避免因空值或格式错误导致验证失败。
最佳实践建议
-
用户体验优化:结合禁用日期和显式验证两种方式,既防止错误选择又提供明确错误提示。
-
性能考虑:对于大型数据集,累计计算可能会影响性能,可以考虑添加防抖机制。
-
国际化:日期格式和提示信息应考虑本地化需求,使用项目配置统一管理。
-
辅助提示:可以在表单中添加动态显示的总时长计算,提升用户体验。
通过以上方案,我们可以在 Formio.js 中构建出既严谨又用户友好的日期验证功能,满足复杂的业务需求。这种模式不仅适用于工作经历收集,也可以灵活应用到各种需要时间轴验证的场景中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00