Polars中高效解析JSON字符串列的最佳实践
2025-05-04 08:35:40作者:尤峻淳Whitney
在数据处理过程中,我们经常需要处理包含JSON字符串的列。本文将介绍在Polars数据分析库中高效解析JSON字符串并将其展开为多列的几种方法,并分析它们的性能差异和适用场景。
方法一:使用原生json_decode函数
Polars提供了原生的str.json_decode方法,这是最高效的解决方案。该方法可以直接将JSON字符串解析为Polars的结构体(Struct),然后通过unnest操作展开为多列。
# 定义预期的数据结构类型
struct = pl.Struct({
"text": pl.Utf8,
"zxc": pl.Int64,
})
# 解析并展开JSON列
df = df.with_columns([
pl.col("json_column").str.json_decode(struct),
]).unnest("json_column")
这种方法的主要优势在于:
- 完全在Rust层面执行,无需Python解释器介入
- 性能最佳,比其他方法快约2倍
- 可以预先定义数据结构,确保类型安全
如果无法预先确定数据结构,可以使用infer_schema_length参数让Polars自动推断类型。
方法二:使用map_elements配合JSON解析库
另一种常见方法是使用map_elements配合Python的JSON解析库:
# 使用标准库json模块
df = df.with_columns([
pl.col("json_column").map_elements(json.loads).alias("parsed")
]).unnest("parsed")
这种方法更灵活,但性能较差。为了提高性能,可以使用更快的orjson库:
# 使用orjson替代标准json模块
df = df.with_columns([
pl.col("json_column").map_elements(orjson.loads).alias("parsed")
]).unnest("parsed")
类型处理技巧
当遇到类型不匹配错误时,如"SchemaMismatch"错误,可以预先转换数据类型:
def convert(x):
data = orjson.loads(x)
return {k: str(v) for k, v in data.items()} # 统一转换为字符串
df = df.with_columns([
pl.col("json_column").map_elements(convert).alias("parsed")
]).unnest("parsed")
性能对比与选择建议
- 性能优先:使用原生
json_decode方法,特别是处理大数据量时 - 灵活性优先:使用
map_elements配合orjson,当数据结构复杂或不确定时 - 类型安全:预先定义Struct结构体可以避免运行时类型错误
对于从PostgreSQL等数据库读取的JSONB数据,推荐优先尝试原生解析方法,它不仅能提供最佳性能,还能更好地与Polars的类型系统集成。
通过合理选择解析方法,可以显著提高Polars处理JSON数据的效率,特别是在大规模数据集上。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1