Azure指标出口器使用教程
1. 项目介绍
Azure指标出口器 是一个专为Prometheus设计的工具,用于从Azure应用程序中导出指标数据。通过利用Azure监控API,它使开发者能够轻松地将Azure资源的性能指标集成到Prometheus监控系统中。项目遵守Apache-2.0许可协议,支持获取并处理各类Azure资源的监控数据,包括但不限于虚拟机、Web应用等,并且提供了灵活的配置选项以适应不同的查询需求和权限设置。
2. 项目快速启动
安装
首先,确保你的系统已安装Go环境。然后,可以通过以下命令下载并安装Azure指标出口器:
go get -u github.com/RobustPerception/azure_metrics_exporter
配置与运行
你需要创建一个名为azure.yml
的配置文件来指定要收集的指标和Azure订阅的相关信息(如subscription_id
, client_id
, client_secret
, tenant_id
)。一个基本的配置示例可能如下:
credentials:
subscription_id: <你的订阅ID>
client_id: <你的客户端ID>
client_secret: <你的客户端密钥>
tenant_id: <你的租户ID>
targets:
- resource: "<资源ID>"
metrics:
- name: "BytesReceived"
- name: "BytesSent"
随后,你可以通过下面的命令启动出口器:
./azure_metrics_exporter --config.file=azure.yml
确保替换配置文件中的占位符为实际值,并根据需要调整其他参数。
Prometheus配置
在Prometheus配置中添加一个新的job以收集这些指标:
global:
scrape_interval: 60s
scrape_configs:
- job_name: 'azure_metrics'
static_configs:
- targets: ['localhost:9276']
这里的9276
是默认的端口,可能会根据你的实际情况进行调整。
3. 应用案例和最佳实践
- 混合云监控: 在多云环境中,可以结合Azure指标出口器与其他云平台的数据采集工具,实现统一的监控视图。
- 自动扩展策略: 利用Azure的CPU利用率等指标,配置自动扩展规则,动态调整资源。
- 警报优化: 设定基于自定义指标的警报规则,比如当特定服务的请求失败率超过阈值时触发警报。
- 最佳实践: 确保Scrape间隔足够长,避免达到Azure API的请求限制(每小时15,000次请求);合理配置资源过滤,减少不必要的数据传输和计算负担。
4. 典型生态项目
虽然直接提及的“典型生态项目”不在上述GitHub仓库中详细列出,但类似的生态系统扩展点可以是整合Azure Monitor的高级功能,或是使用Prometheus生态的可视化工具如Grafana,将从Azure导出的指标以图表形式展示出来。此外,【webdevops/azure-metrics-exporter】项目提供了一个增强版,它增加了维度支持和服务发现能力,进一步丰富了与Azure监控集成的选项。
本教程介绍了如何快速开始使用Azure指标出口器,以及一些基本的应用场景和最佳实践。为了深入理解和高效利用这个工具,建议仔细阅读项目文档,并结合实际的监控需求进行定制化配置。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









