CRIS.pytorch 官方实现教程
2024-08-10 04:42:20作者:宣利权Counsellor
1. 项目介绍
CRIS(CLIP-Driven Referring Image Segmentation)是提出的一种新框架,用于将CLIP模型在图像级别的语义知识转移至像素级的参照图像分割任务。这个官方PyTorch实现旨在提供一个高效且可复现的研究平台,以促进多模态及对比学习在指代图像分割领域的应用。
主要特性
- 基于CLIP的对比学习方法
- 支持在RefCOCO数据集上的评估
- 提供了训练和测试脚本
- 使用MIT许可,允许自由使用和修改
2. 项目快速启动
安装依赖
确保已安装Python 3.6+ 和 PyTorch。使用以下命令安装其他依赖库:
pip install -r requirement.txt
数据准备
下载并准备RefCOCO数据集的Lmdb格式。这一步需要根据实际数据存储位置调整。
# 下载数据集并创建LMDB文件(示例)
wget http://example.com/refcocog_g.zip
unzip refcocog_g.zip
mv refcocog_g datasets/lmdb/
python tools/create_lmdb.py datasets/lmdb/refcocog_g/ --output datasets/lmdb/refcocog_g.lmdb
运行训练
启动CRIS模型的训练:
CUDA_VISIBLE_DEVICES=0 python train.py \
--config config/refcoco/cris_r50.yaml
测试模型
在验证集上评估模型性能:
CUDA_VISIBLE_DEVICES=0 python test.py \
--config config/refcoco/cris_r50.yaml \
--test_split val-test \
--test_lmdb datasets/lmdb/refcocog_g/val.lmdb
3. 应用案例和最佳实践
- 自定义配置: 可以通过修改
config/*.yaml文件来定制训练参数。 - 多GPU训练: 设置
CUDA_VISIBLE_DEVICES环境变量为多个GPU ID以启用分布式训练。 - 模型微调: 对预训练模型进行微调以适应特定场景或新的数据集。
最佳实践:
- 在运行前检查硬件资源,合理分配GPU内存。
- 为了加快收敛速度,建议先进行预训练模型的迁移学习。
- 优化超参数设置,如学习率、批大小等,以提高性能。
4. 典型生态项目
CRIS.pytorch 可以与以下几个相关项目结合,构建更复杂的多模态系统:
- Detectron2: Facebook提供的通用物体检测和分割框架,可用于结合CRIS进行更丰富的图像理解任务。
- Transformers: 包含大量预训练模型(包括CLIP),可用于扩展CRIS的语义表示能力。
- MMF: 微软开源的多模态基础架构,支持多种多模态任务,可以与CRIS结合使用。
了解这些生态系统中的组件可以帮助你进一步探索和利用CRIS在多模态任务中的潜力。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
662