CRIS.pytorch 官方实现教程
2024-08-10 04:42:20作者:宣利权Counsellor
1. 项目介绍
CRIS(CLIP-Driven Referring Image Segmentation)是提出的一种新框架,用于将CLIP模型在图像级别的语义知识转移至像素级的参照图像分割任务。这个官方PyTorch实现旨在提供一个高效且可复现的研究平台,以促进多模态及对比学习在指代图像分割领域的应用。
主要特性
- 基于CLIP的对比学习方法
- 支持在RefCOCO数据集上的评估
- 提供了训练和测试脚本
- 使用MIT许可,允许自由使用和修改
2. 项目快速启动
安装依赖
确保已安装Python 3.6+ 和 PyTorch。使用以下命令安装其他依赖库:
pip install -r requirement.txt
数据准备
下载并准备RefCOCO数据集的Lmdb格式。这一步需要根据实际数据存储位置调整。
# 下载数据集并创建LMDB文件(示例)
wget http://example.com/refcocog_g.zip
unzip refcocog_g.zip
mv refcocog_g datasets/lmdb/
python tools/create_lmdb.py datasets/lmdb/refcocog_g/ --output datasets/lmdb/refcocog_g.lmdb
运行训练
启动CRIS模型的训练:
CUDA_VISIBLE_DEVICES=0 python train.py \
--config config/refcoco/cris_r50.yaml
测试模型
在验证集上评估模型性能:
CUDA_VISIBLE_DEVICES=0 python test.py \
--config config/refcoco/cris_r50.yaml \
--test_split val-test \
--test_lmdb datasets/lmdb/refcocog_g/val.lmdb
3. 应用案例和最佳实践
- 自定义配置: 可以通过修改
config/*.yaml文件来定制训练参数。 - 多GPU训练: 设置
CUDA_VISIBLE_DEVICES环境变量为多个GPU ID以启用分布式训练。 - 模型微调: 对预训练模型进行微调以适应特定场景或新的数据集。
最佳实践:
- 在运行前检查硬件资源,合理分配GPU内存。
- 为了加快收敛速度,建议先进行预训练模型的迁移学习。
- 优化超参数设置,如学习率、批大小等,以提高性能。
4. 典型生态项目
CRIS.pytorch 可以与以下几个相关项目结合,构建更复杂的多模态系统:
- Detectron2: Facebook提供的通用物体检测和分割框架,可用于结合CRIS进行更丰富的图像理解任务。
- Transformers: 包含大量预训练模型(包括CLIP),可用于扩展CRIS的语义表示能力。
- MMF: 微软开源的多模态基础架构,支持多种多模态任务,可以与CRIS结合使用。
了解这些生态系统中的组件可以帮助你进一步探索和利用CRIS在多模态任务中的潜力。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
279
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
303
Ascend Extension for PyTorch
Python
107
138
暂无简介
Dart
571
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
601
166
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
299
39