Brax项目中PPO训练时randomization_fn与eval_env的交互问题解析
2025-06-29 03:14:13作者:秋泉律Samson
问题背景
在Brax强化学习框架中,使用PPO算法进行训练时,开发者可能会遇到一个关于环境随机化函数(randomization_fn)与评估环境(eval_env)配置的交互问题。当在训练函数中提供了randomization_fn参数但没有同时提供eval_env参数时,系统会抛出trace错误。
问题现象
具体表现为以下两种场景:
- 当仅提供randomization_fn而不提供eval_env时,训练过程会失败
- 当同时提供randomization_fn和eval_env时,训练可以正常进行
技术分析
根本原因
经过深入分析,发现问题实际上源于randomization_fn函数的实现方式。在Brax框架中,环境随机化函数的编写需要特别注意JAX的自动微分和向量化特性。
关键发现
开发者最初提供的domain_randomize函数存在两个版本:
问题版本:
def domain_randomize(sys, rng, body_mass_scale_range=(0.7, 1.3)):
@jax.vmap
def rand(rng):
_, key_mass = jax.random.split(rng, 2)
body_mass_scale = jax.random.uniform(
key_mass,
(3,),
minval=body_mass_scale_range[0],
maxval=body_mass_scale_range[1],
)
body_mass = sys.body_mass * body_mass_scale
return body_mass
# 其余代码...
正常版本:
def domain_randomize(sys, rng):
@jax.vmap
def rand(rng):
return jax.random.uniform(rng, (3,), minval=0.2, maxval=0.4)
# 其余代码...
问题本质
差异点在于:
- 问题版本中尝试在vmap函数内部访问sys.body_mass
- 正常版本则避免了这种访问
在JAX的vmap转换中,访问外部作用域的变量需要特别注意,因为这些变量可能无法正确参与向量化操作。当randomization_fn函数中存在这种访问模式时,如果没有提供eval_env,Brax的内部处理逻辑会触发JAX的trace错误。
解决方案
- 推荐方案:重构randomization_fn函数,避免在vmap内部访问系统参数
- 临时方案:始终提供eval_env参数,即使只是创建一个与训练环境相同的实例
最佳实践建议
在Brax中实现domain randomization时:
- 将系统参数的访问限制在vmap函数外部
- 在vmap内部只进行纯粹的随机数生成和计算
- 考虑使用JAX的tree_map等函数来处理系统参数的批量修改
- 测试时先使用简单的随机化函数验证基本功能
深入理解
这个问题实际上反映了JAX函数转换(如vmap)的一个重要特性:被转换的函数应该是"纯函数",不应依赖于外部状态。当randomization_fn在vmap内部访问sys.body_mass时,就违反了这一原则,导致JAX在尝试追踪计算图时出现问题。
总结
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218