LLM项目新增OpenAI嵌入模型text-embedding-3系列支持
OpenAI近期发布了新一代文本嵌入模型text-embedding-3-small和text-embedding-3-large,LLM项目迅速跟进,为开发者提供了这些新模型的支持能力。本文将详细介绍这些新模型的技术特性及其在LLM项目中的应用方式。
新一代嵌入模型相比前代text-embedding-ada-002具有显著优势。text-embedding-3-small不仅性能更优,价格也更加经济实惠。text-embedding-3-large则提供了更高的嵌入维度,能够捕获更丰富的语义信息。
最引人注目的是新模型引入了维度可调特性。开发者可以通过dimensions参数自由控制输出嵌入向量的长度,在性能和成本之间取得平衡。例如,text-embedding-3-large默认产生3072维向量,但可以缩减至256维仍保持优于ada-002 1536维的表现。
LLM项目通过预注册多个维度变体模型的方式支持这一特性。目前内置了以下模型选项:
- 3-small-512:512维的小型模型
- 3-large-256:256维的大型模型
- 3-large-1024:1024维的大型模型
开发者可以像使用常规模型一样调用这些变体。例如,要获取512维的嵌入向量,只需指定3-small-512模型即可。这种设计既保持了API的简洁性,又提供了足够的灵活性。
对于需要其他维度组合的开发者,LLM项目未来可能会提供自定义模型注册功能,但目前推荐使用预置的维度变体。这一决策基于项目架构的演进规划,特别是考虑到即将进行的OpenAI功能插件化重构。
在实际应用中,开发者应根据具体场景选择合适的模型和维度。对于大多数检索任务,3-small-512可能已经足够;而对精度要求更高的语义分析场景,则可以考虑使用3-large-1024或完整维度的3-large模型。
LLM项目将持续关注OpenAI API的更新,确保开发者能够第一时间用上最新的模型和技术。随着嵌入模型技术的进步,文本表示能力将变得更加强大和高效,为各类NLP应用提供更好的基础支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00