LLM项目新增OpenAI嵌入模型text-embedding-3系列支持
OpenAI近期发布了新一代文本嵌入模型text-embedding-3-small和text-embedding-3-large,LLM项目迅速跟进,为开发者提供了这些新模型的支持能力。本文将详细介绍这些新模型的技术特性及其在LLM项目中的应用方式。
新一代嵌入模型相比前代text-embedding-ada-002具有显著优势。text-embedding-3-small不仅性能更优,价格也更加经济实惠。text-embedding-3-large则提供了更高的嵌入维度,能够捕获更丰富的语义信息。
最引人注目的是新模型引入了维度可调特性。开发者可以通过dimensions参数自由控制输出嵌入向量的长度,在性能和成本之间取得平衡。例如,text-embedding-3-large默认产生3072维向量,但可以缩减至256维仍保持优于ada-002 1536维的表现。
LLM项目通过预注册多个维度变体模型的方式支持这一特性。目前内置了以下模型选项:
- 3-small-512:512维的小型模型
- 3-large-256:256维的大型模型
- 3-large-1024:1024维的大型模型
开发者可以像使用常规模型一样调用这些变体。例如,要获取512维的嵌入向量,只需指定3-small-512模型即可。这种设计既保持了API的简洁性,又提供了足够的灵活性。
对于需要其他维度组合的开发者,LLM项目未来可能会提供自定义模型注册功能,但目前推荐使用预置的维度变体。这一决策基于项目架构的演进规划,特别是考虑到即将进行的OpenAI功能插件化重构。
在实际应用中,开发者应根据具体场景选择合适的模型和维度。对于大多数检索任务,3-small-512可能已经足够;而对精度要求更高的语义分析场景,则可以考虑使用3-large-1024或完整维度的3-large模型。
LLM项目将持续关注OpenAI API的更新,确保开发者能够第一时间用上最新的模型和技术。随着嵌入模型技术的进步,文本表示能力将变得更加强大和高效,为各类NLP应用提供更好的基础支持。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









