Mu - 一个快速的 Node.js Mustache 引擎使用技术文档
本文档将为您详细介绍如何安装、使用以及 Mu 项目 API 的相关内容。
1. 安装指南
由于项目维护者遇到了 npm 认证问题,目前您需要使用以下命令进行安装:
npm install mu2
2. 项目使用说明
Mu 是一个快速的 Node.js Mustache 引擎。以下是一些使用 Mu 的简单示例。
基本使用
var mu = require('mu2'); // 注意这里的 "2",与 npm 仓库匹配
mu.root = __dirname + '/templates';
mu.compileAndRender('index.html', {name: "john"})
.on('data', function (data) {
console.log(data.toString());
});
结合 HTTP 模块使用
var http = require('http')
, util = require('util')
, mu = require('mu2');
mu.root = __dirname + '/templates';
http.createServer(function (req, res) {
var stream = mu.compileAndRender('index.html', {name: "john"});
stream.pipe(res);
}).listen(8000);
开发模式下使用
以下是一个技巧,用于在开发模式下始终编译模板(以便立即反映更改):
var http = require('http')
, util = require('util')
, mu = require('mu2');
mu.root = __dirname + '/templates';
http.createServer(function (req, res) {
if (process.env.NODE_ENV == 'DEVELOPMENT') {
mu.clearCache();
}
var stream = mu.compileAndRender('index.html', {name: "john"});
util.pump(stream, res);
}).listen(8000);
3. 项目 API 使用文档
以下是 Mu 项目的 API 文档。
-
mu.root
: 模板查找的路径。默认为当前工作目录。 -
mu.compileAndRender(String templateName, Object view)
: 返回一个 Stream。首次调用此函数时,将编译指定名称的模板并渲染到 Stream。后续使用相同模板名称的调用将使用缓存的编译版本以提高性能。 -
mu.compile(filename, callback)
: 返回 null。此函数用于编译模板。通常您不需要直接使用它,但在执行一些特殊操作时,这可能对您有帮助。多次调用时不会使用内部缓存,但会将编译后的形式添加到缓存中。 -
mu.compileText(String name, String template, Function callback)
: 返回 null。与mu.compile
类似,但接收一个名称和模板的实际字符串。不进行磁盘 I/O 操作,也不会自动编译部分模板。 -
mu.render(Mixed filenameOrCompiledTemplate, Object view)
: 返回 Stream。此函数接受先前编译(在缓存中)的模板名称或mu.compile
的结果。 -
mu.renderText(String template, Object view, Object partials)
: 返回 Stream。与render
类似,但接收一个模板字符串和一个部分对象。这不是使用 Mu 的最高效方式,因此仅在开发/测试时使用。 -
mu.clearCache(String templateNameOrNull)
: 清除特定模板的缓存。如果省略名称,则清除所有缓存。
4. 项目安装方式
请使用以下命令安装 Mu:
npm install mu2
以上内容为您提供了 Mu 项目的安装、使用和 API 文档。希望这些信息能帮助您更好地使用 Mu 项目。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0361Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









