Pyserini 在 Apple M3 芯片上的检索问题分析与解决方案
问题背景
在使用 Pyserini 进行 NFCorpus 数据集检索实验时,部分用户在 Apple M3 芯片的 Mac 设备上遇到了程序崩溃问题。具体表现为在检索阶段出现 SIGSEGV(段错误)信号,导致 Java 运行时环境异常终止。这个问题与之前报道的 Apple M1 芯片上的类似问题有相似之处。
错误现象
当用户尝试运行基于 BAAI/bge-base-en-v1.5 或 facebook/contriever-msmarco 嵌入模型的检索任务时,系统报告以下关键错误信息:
# A fatal error has been detected by the Java Runtime Environment:
#
# SIGSEGV (0xb) at pc=0x000000011f48d828, pid=11716, tid=26883
#
# JRE version: Java(TM) SE Runtime Environment (21.0.5+9) (build 21.0.5+9-LTS-239)
# Java VM: Java 64-Bit Server VM (21.0.5+9-LTS-239, mixed mode, sharing, tiered, compressed oops, compressed class ptrs, g1 gc, bsd-aarch64)
# Problematic frame:
# C [libomp.dylib+0x69828] void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true>*)+0x2c
错误发生在 OpenMP 库(libomp.dylib)的线程挂起操作中,这表明问题可能与多线程执行环境有关。
技术分析
-
ARM架构兼容性问题:Apple Silicon(M1/M3)采用ARM架构,与传统x86架构在内存模型和指令集上有显著差异。某些Java库或本地代码可能没有完全适配ARM架构。
-
OpenMP并行处理冲突:错误发生在OpenMP库的线程管理部分,表明多线程并行处理可能存在问题。这可能是由于线程同步或内存访问冲突导致的。
-
Java运行时环境:虽然使用的是较新的Java 21版本,但某些JVM优化可能在ARM架构上表现不稳定。
-
虚拟环境差异:开发安装与常规安装的环境配置可能存在差异,影响底层库的加载和行为。
解决方案
经过验证,使用Conda虚拟环境可以有效解决此问题。具体步骤如下:
-
创建并激活Conda环境:
conda create -n pyserini_env python=3.10 conda activate pyserini_env -
在Conda环境中安装Pyserini及其依赖项
-
运行检索任务
Conda环境提供的隔离性和预编译的二进制包能够确保所有依赖库(包括OpenMP)与Apple Silicon架构正确兼容。
预防措施
对于Apple Silicon用户,建议:
- 优先使用Conda等虚拟环境管理工具
- 确保所有依赖库都有ARM原生版本
- 监控Java进程的内存使用情况
- 考虑调整并行线程数量,减少并发压力
总结
Apple Silicon架构带来了性能优势,但也引入了新的兼容性挑战。通过使用适当的虚拟环境管理工具,可以有效解决这类底层系统兼容性问题,确保信息检索任务稳定执行。这个问题也提醒我们,在ARM架构上运行复杂Java应用时,需要特别注意环境配置和依赖管理。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00