DEER 的安装和配置教程
2025-05-26 17:51:32作者:彭桢灵Jeremy
1. 项目的基础介绍和主要的编程语言
DEER(Dynamic Early Exit in Reasoning)是一个为大型推理语言模型设计的动态早期退出方法。该方法通过监控模型在潜在的推理转换点上的行为,当模型对一个试验答案表现出高度自信时,动态地终止下一个推理链的生成。根据项目描述,DEER 在 11 个领先推理 LLMs 的不同系列和大小上均表现出持续的有效性,平均减少了 19.1% - 80.1% 的 CoT 序列长度,同时提高了 0.3% - 5.0% 的准确性。
该项目主要使用 Python 编程语言。
2. 项目使用的关键技术和框架
DEER 使用了以下关键技术和框架:
- vLLM: 一个用于高效推理的语言模型框架。
- HuggingFace Transformers: 一个流行的自然语言处理库,用于训练和推理。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖:
- Python 3.7 或更高版本
- pip(Python 包管理器)
- CUDA(如果使用 GPU 进行加速)
安装步骤
-
克隆项目仓库
打开命令行工具,执行以下命令以克隆项目仓库:
git clone https://github.com/iie-ycx/DEER.git cd DEER -
安装项目依赖
在项目根目录下,运行以下命令安装项目所需的所有依赖项:
pip install -r requirements.txt -
配置环境变量(可选)
如果您使用 GPU,可能需要设置
CUDA_VISIBLE_DEVICES环境变量来指定要使用的 GPU 设备。export CUDA_VISIBLE_DEVICES=1 -
运行示例脚本
根据您的模型选择,可以运行以下脚本来开始使用 DEER:
-
对于大多数推理模型:
python ../vllm-deer.py \ --model_name_or_path "./DeepSeek-R1-Distill-Qwen-14B" \ --dataset_dir "./data/" \ --output_path "./outputs" \ --dataset "math" \ --threshold 0.95 \ --max_generated_tokens 16000 \ --think_ratio 0.6 \ --batch_size 2000 \ --policy avg1 \ --dtype bfloat16 \ --gpu-memory-utilization 0.9 -
对于 Qwen3 模型:
python ../vllm-deer-qwen3.py \ --model_name_or_path "./Qwen3-4B" \ --dataset_dir "./data/" \ --output_path "./outputs" \ --dataset "math" \ --threshold 0.95 \ --max_generated_tokens 16000 \ --think_ratio 0.8 \ --batch_size 2000 \ --dtype bfloat16 \ --policy avg2 \ --gpu-memory-utilization 0.9
-
以上就是 DEER 的安装和配置指南,按照以上步骤操作,您应该能够成功安装并运行该项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C072
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
460
3.43 K
暂无简介
Dart
713
170
Ascend Extension for PyTorch
Python
267
304
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
186
71
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
842
417
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
446
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119