original-coast-clothing 的安装和配置教程
1. 项目基础介绍和主要编程语言
original-coast-clothing 是一个示例性的开源项目,由Facebook提供。该项目是一个虚构的服装品牌——Original Coast Clothing(OC)的Messenger机器人,旨在展示如何利用Messenger平台的关键特性,为用户带来优秀的客户体验。该项目主要使用的编程语言是JavaScript。
2. 项目使用的关键技术和框架
项目使用以下技术和框架:
- Node.js: 服务器端的JavaScript运行环境。
- Express: 基于Node.js的Web应用框架,用于快速构建单页、多页或混合Web应用。
- Heroku: 云服务平台,用于部署应用。
- ngrok: 用于本地开发的HTTP隧道服务,可以使本地服务器通过互联网被访问。
- Facebook Messenger Platform: 用于创建与Facebook Messenger集成的机器人。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装之前,请确保您的系统中已安装以下工具:
- Node.js(10.x或更高版本)
- Git
- 用于部署的Heroku CLI(可选)
- 本地隧道服务ngrok(可选)
安装步骤
步骤1:克隆项目
首先,您需要在本地克隆项目仓库:
git clone git@github.com:fbsamples/original-coast-clothing.git
cd original-coast-clothing
步骤2:安装依赖
在项目目录中,安装所需的npm依赖:
npm install
或者,如果您使用Yarn:
yarn install
步骤3:配置环境变量
复制.sample.env文件为.env,并根据您的应用程序和Facebook页面信息编辑它:
cp .sample.env .env
编辑.env文件并填写如下信息:
APP_ID=您的Facebook应用ID
APP_SECRET=您的Facebook应用密钥
PAGE_ID=您的Facebook页面ID
APP_URL=您的应用程序URL(如果是ngrok,则为ngrok提供的URL)
VERIFY_TOKEN=您为Webhook验证生成的token
步骤4:运行应用程序
在项目目录中,运行以下命令以启动应用程序:
node app.js
此时,您应该能够在浏览器中通过http://localhost:3000访问应用程序。
步骤5:配置Webhook和Messenger档案
使用.env文件中创建的VERIFY_TOKEN,通过浏览器或cURL调用以下端点以配置Webhook:
http://localhost:3000/profile?mode=all&verify_token=verify-token
步骤6:测试应用程序
通过向您的Facebook页面发送消息来测试应用程序。如果一切配置正确,您应该会在终端看到Webhook被调用的信息,并在Messenger中收到响应。
部署到Heroku(可选)
如果您希望将应用程序部署到Heroku,请按照以下步骤操作:
步骤1:安装Heroku CLI
从Heroku官网下载并安装Heroku CLI。
步骤2:创建Heroku应用
使用Heroku CLI创建一个新的Heroku应用:
heroku apps:create
步骤3:设置环境变量
在Heroku应用仪表板上设置环境变量,或使用以下命令:
heroku config:set PAGE_ID=您的Facebook页面ID
# 其他需要的环境变量
步骤4:部署代码
将代码推送到Heroku:
git push heroku main
步骤5:查看日志
查看应用程序的实时日志输出:
heroku logs --tail
步骤6:配置Webhook和Messenger档案
使用Heroku应用的URL和配置变量中设置的VERIFY_TOKEN来配置Webhook。
步骤7:测试应用程序
向您的Facebook页面发送消息以测试应用程序是否按预期运行。
按照上述步骤,您可以成功安装和配置original-coast-clothing项目,并开始在Facebook Messenger上创建机器人。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00