ClipFace 的安装和配置教程
2025-05-18 06:33:11作者:侯霆垣
1. 项目基础介绍和主要编程语言
ClipFace 是一个开源项目,它提供了一种基于文本指导的3D面部模型编辑方法。该项目旨在通过用户友好的语言提示,实现对3D面部模型表情和外观的控制。ClipFace 利用3D morphable 模型的几何表现力,开发了一种自监督生成模型,以共同合成表现力强、纹理丰富、结构分明的3D面部。该项目的实现主要使用了 Python 编程语言。
2. 项目使用的关键技术和框架
该项目采用了以下关键技术和框架:
- FLAME(面部形态模型):用于预测3D面部网格顶点。
- DECA:用于从RGB图像中预测FLAME参数。
- StyleGAN2:一种用于生成高质量纹理图的生成对抗网络。
- PyTorch Lightning:用于简化PyTorch的模型训练过程。
- NvDiffrast:用于可微分渲染,这是一种在训练过程中允许对渲染图像进行梯度计算的技术。
- CLIP模型:用于理解文本和图像之间的关联。
3. 项目安装和配置的准备工作及详细步骤
准备工作:
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Linux
- 显卡和CUDA版本:NVIDIA GPU + CUDA 11.4
- Python版本:Python 3.8
安装步骤:
-
克隆项目仓库:
git clone https://github.com/shivangi-aneja/ClipFace.git -
安装依赖:
在项目根目录下,运行以下命令安装所需的Python包:
pip install -r requirements.txt如果需要使用可微分渲染,还需安装
NvDiffrast:pip install NvDiffrast -
下载预训练模型:
根据项目说明文档,下载所需的预训练模型,如FLAME和DECA模型,并将它们放置在相应的目录中。
-
准备数据集:
使用FFHQ数据集训练纹理生成器。从FFHQ数据集中去除戴帽子和眼镜的图片,得到一个清洁的过滤数据集。使用DECA模型预测过滤数据集中每张图片的FLAME参数,并使用这些参数预测网格顶点,然后用纹理图渲染网格。
-
训练纹理生成器:
运行以下命令以训练StyleGAN2生成器:
python -m trainer.trainer_stylegan.train_stylegan_ada_texture_patch -
文本指导的编辑:
根据需要,运行以下命令以进行纹理编辑或纹理与表情的联合编辑:
-
仅训练纹理编辑:
python -m trainer.trainer_texture_expression.train_mlp_texture -
训练纹理和表情编辑:
python -m trainer.trainer_texture_expression.train_mlp_texture_expression
-
-
配置路径:
根据需要,编辑
configs/stylegan_ada.yaml和configs/clipface.yaml文件,配置数据路径和模型路径。
通过以上步骤,您可以完成ClipFace项目的安装和配置。遵循这些基本指南,即使是编程新手也应该能够成功安装和运行该项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
198
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
426
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694