ClipFace 的安装和配置教程
2025-05-18 20:21:29作者:侯霆垣
1. 项目基础介绍和主要编程语言
ClipFace 是一个开源项目,它提供了一种基于文本指导的3D面部模型编辑方法。该项目旨在通过用户友好的语言提示,实现对3D面部模型表情和外观的控制。ClipFace 利用3D morphable 模型的几何表现力,开发了一种自监督生成模型,以共同合成表现力强、纹理丰富、结构分明的3D面部。该项目的实现主要使用了 Python 编程语言。
2. 项目使用的关键技术和框架
该项目采用了以下关键技术和框架:
- FLAME(面部形态模型):用于预测3D面部网格顶点。
- DECA:用于从RGB图像中预测FLAME参数。
- StyleGAN2:一种用于生成高质量纹理图的生成对抗网络。
- PyTorch Lightning:用于简化PyTorch的模型训练过程。
- NvDiffrast:用于可微分渲染,这是一种在训练过程中允许对渲染图像进行梯度计算的技术。
- CLIP模型:用于理解文本和图像之间的关联。
3. 项目安装和配置的准备工作及详细步骤
准备工作:
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Linux
- 显卡和CUDA版本:NVIDIA GPU + CUDA 11.4
- Python版本:Python 3.8
安装步骤:
-
克隆项目仓库:
git clone https://github.com/shivangi-aneja/ClipFace.git
-
安装依赖:
在项目根目录下,运行以下命令安装所需的Python包:
pip install -r requirements.txt
如果需要使用可微分渲染,还需安装
NvDiffrast
:pip install NvDiffrast
-
下载预训练模型:
根据项目说明文档,下载所需的预训练模型,如FLAME和DECA模型,并将它们放置在相应的目录中。
-
准备数据集:
使用FFHQ数据集训练纹理生成器。从FFHQ数据集中去除戴帽子和眼镜的图片,得到一个清洁的过滤数据集。使用DECA模型预测过滤数据集中每张图片的FLAME参数,并使用这些参数预测网格顶点,然后用纹理图渲染网格。
-
训练纹理生成器:
运行以下命令以训练StyleGAN2生成器:
python -m trainer.trainer_stylegan.train_stylegan_ada_texture_patch
-
文本指导的编辑:
根据需要,运行以下命令以进行纹理编辑或纹理与表情的联合编辑:
-
仅训练纹理编辑:
python -m trainer.trainer_texture_expression.train_mlp_texture
-
训练纹理和表情编辑:
python -m trainer.trainer_texture_expression.train_mlp_texture_expression
-
-
配置路径:
根据需要,编辑
configs/stylegan_ada.yaml
和configs/clipface.yaml
文件,配置数据路径和模型路径。
通过以上步骤,您可以完成ClipFace项目的安装和配置。遵循这些基本指南,即使是编程新手也应该能够成功安装和运行该项目。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
884
524

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

React Native鸿蒙化仓库
C++
182
264

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
364
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
736
105