KEDA大规模部署伸缩性能问题分析与优化实践
2025-05-26 04:31:23作者:傅爽业Veleda
问题背景
在Kubernetes环境中使用KEDA进行大规模部署伸缩时,当ScaledObject数量在700到1250之间时,出现了明显的性能下降问题。具体表现为从0到2的副本数伸缩过程耗时异常,特别是在1到2的伸缩阶段需要约2.5小时才能完成,而其他规模范围(如1500-2000)反而能在15分钟内完成伸缩。
问题现象分析
通过详细测试和日志分析,发现以下关键现象:
- 在700-1250个ScaledObject范围内,KEDA激活所有ScaledObject并将副本从0到1耗时约5分钟,但从1到2的过程异常缓慢
- 日志显示部分HPA对KEDA metricsapi server的调用延迟高达2.5小时
- KEDA operator的轮询和协调活动出现明显延迟,单次轮询时间超过30秒
- 资源配额充足,排除计算资源不足的可能性
根本原因定位
经过深入排查,发现问题主要源于两个方面:
- Kubernetes客户端限流:默认的QPS(20)和Burst(30)设置在大规模部署下成为瓶颈,导致API调用被限流
- 状态处理效率:旧版本KEDA(v2.13.1)在状态更新方面存在性能瓶颈,频繁的API调用加剧了限流问题
优化方案与实施
基于问题分析,实施了以下优化措施:
- 版本升级:将KEDA从v2.13.1升级到v2.15,利用新版对状态处理的优化
- 客户端参数调整:
- 将kube-api-qps从20提升到60
- 将kube-api-burst从30提升到90
- 并行协调调优:调整KEDA_SCALEDOBJECT_CTRL_MAX_RECONCILES参数增加并行处理能力
优化效果验证
实施优化后进行了系统测试,结果如下:
- 仅升级到v2.15版本:伸缩时间从2.5小时降至50分钟
- 增加客户端参数调整后:
- 首次伸缩窗口时间降至30分钟
- 后续伸缩窗口时间稳定在2-3分钟
- 结合所有优化措施后,整体伸缩时间(包括节点扩容)稳定在15-17分钟
生产环境考量
对于生产环境部署,需要注意:
- 监控API服务器负载,确保控制平面能够处理增加的请求量
- 观察KEDA日志中的"client-side throttling"信息,作为是否需要进一步调整参数的依据
- 根据实际集群规模和工作负载特性进行参数微调
- 建议从较低参数值开始,逐步增加并观察效果
最佳实践建议
基于此次经验,总结出以下KEDA大规模部署的最佳实践:
- 定期升级到最新稳定版本,获取性能改进
- 根据部署规模合理配置客户端QPS和Burst参数
- 监控系统日志,及时发现并解决限流问题
- 首次部署后预留额外时间进行首次伸缩
- 在非生产环境进行充分测试,确定最优参数配置
通过以上优化措施,成功解决了KEDA在大规模部署场景下的性能瓶颈问题,为类似场景提供了可复用的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76