LangGraph SDK 0.1.57版本发布:增强流式输出过滤能力
LangGraph是一个用于构建和运行复杂工作流的Python SDK,它提供了强大的工具来管理和协调多个任务的执行。在最新发布的0.1.57版本中,LangGraph SDK对流的处理能力进行了重要增强,特别是为join_stream
方法新增了stream_mode
参数,让开发者能够更灵活地控制流式输出的内容。
流式处理的新特性
在分布式系统和工作流引擎中,流式处理是一个核心功能。LangGraph SDK的join_stream
方法允许开发者以流式方式获取工作流执行的中间结果和最终输出。在0.1.57版本之前,开发者获取的是完整的流数据,缺乏对特定类型数据的过滤能力。
新版本引入了stream_mode
参数,这是一个重要改进。开发者现在可以通过这个参数指定希望接收的流数据类型,例如:
- "values":仅获取工作流的值输出
- "debug":获取调试信息
- 或者同时指定多种模式
这种细粒度的控制使得开发者能够根据实际需求精确地获取所需数据,而不必处理无关的流信息,显著提高了开发效率和系统性能。
同步与异步版本的一致性
0.1.57版本还解决了同步和异步join_stream
方法之间的功能差异问题。之前,异步版本支持cancel_on_disconnect
参数,而同步版本则不支持。现在,同步版本也添加了这一参数,实现了两个版本的功能一致性。
cancel_on_disconnect
参数是一个重要的容错机制,当设置为True时,如果客户端断开连接,系统会自动取消正在进行的流处理任务,避免资源浪费。这一改进使得同步和异步API更加统一,减少了开发者的学习成本。
实际应用场景
假设你正在开发一个复杂的数据处理工作流,其中包含多个步骤和中间状态。使用新版本的join_stream
方法,你可以:
- 在开发阶段,同时获取"values"和"debug"信息,方便调试
- 在生产环境,仅获取"values"信息,提高性能并减少网络传输
- 根据客户端连接状态自动清理资源,提高系统稳定性
这种灵活性使得LangGraph SDK能够适应从开发到生产的不同阶段需求,为构建可靠、高效的工作流系统提供了坚实基础。
总结
LangGraph SDK 0.1.57版本的这一改进,体现了项目团队对开发者体验的持续关注。通过增强流式输出的过滤能力,开发者现在能够更高效地处理工作流数据,同时保持代码的简洁性。这种改进对于构建复杂、数据密集型应用尤为重要,它使得LangGraph在分布式工作流管理领域的竞争力进一步提升。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~055CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0380- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









