Apache Fury v0.10.0 发布:高性能序列化框架的重大升级
2025-06-16 16:28:57作者:宗隆裙
Apache Fury 是一个高性能的多语言序列化框架,支持 Java、Python、JavaScript 等多种语言。它通过创新的序列化协议和优化技术,提供了比传统序列化方案更高的性能和更低的延迟。Fury 特别适合大数据量、高并发的分布式系统场景,如微服务通信、缓存存储等。
核心特性升级
分块式 Map 序列化协议
v0.10.0 版本引入了革命性的分块式 Map 序列化协议,这是本次更新的最重要特性。传统的 Map 序列化需要一次性处理整个数据结构,而新的分块协议允许将大型 Map 分解为多个小块进行序列化,带来了显著的性能提升:
- 内存效率提升:不再需要为整个 Map 分配连续内存,降低了内存峰值使用
- 流式处理能力:支持边序列化边传输,特别适合网络传输场景
- JIT 优化支持:新的协议设计更好地利用了 JIT 编译优化
- 跨语言一致性:Java 和 Python 实现了相同的协议标准
JavaScript 字符串序列化优化
针对 JavaScript 环境,v0.10.0 对字符串序列化进行了深度优化:
- 实现了更紧凑的 UTF-8 编码方案
- 移除了不必要的 4 字节 UTF-16 大小头
- 优化了压缩算法选择逻辑
- 减少了内存分配次数
这些优化使得 JavaScript 环境下的字符串序列化性能提升了 30%-50%,特别是在处理大量短字符串时效果更为明显。
其他重要改进
Java 增强
- 可变缓冲区大小限制:新增了可配置的缓冲区大小限制,用户可以根据应用场景调整
- 类型兼容序列化:支持将一种 POJO 类型反序列化为另一种兼容类型
- Zstd 元数据压缩:新增了 Zstd 算法用于元数据压缩,提供更高的压缩比
- 行格式流式编解码:支持缓冲区流式编码/解码,提升大数据量处理能力
Python 改进
- 跨平台支持:新增对 Windows 和 macOS 的完整支持
- 自动发布流程:实现了 macOS 和 Windows 平台的自动发布
- 分块式 Map 支持:与 Java 保持一致的 Map 序列化协议
- Python 3.7 弃用:停止对 Python 3.7 的支持,专注于新版本优化
问题修复
- 修复了类加载器回调不生效的问题
- 解决了字符串压缩模式下的反序列化错误
- 修正了兼容模式 API 的反序列化失败问题
- 修复了分块 Map 序列化边界条件错误
技术实现深度解析
分块序列化协议设计
新的分块式 Map 序列化协议采用了预测性分块策略,其核心思想是:
- 动态分块:根据数据特征和大小自动确定最佳分块策略
- 元数据先行:先序列化关键元数据,便于接收方预分配资源
- 校验机制:每个数据块包含完整性校验信息
- 自适应缓冲:根据网络条件和系统负载动态调整分块大小
这种设计特别适合处理不均衡的 Map 结构,如某些键值对特别大而其他较小的场景。
字符串编码优化
JavaScript 字符串序列化优化主要从以下几个方面入手:
- 编码选择:根据字符串内容自动选择最优编码方案
- 缓冲区复用:减少临时缓冲区的创建和销毁
- 压缩阈值:基于字符串长度和内容特征智能决定是否压缩
- SIMD 优化:在支持的平台上使用 SIMD 指令加速编码过程
升级建议
对于现有用户,升级到 v0.10.0 版本时需要注意:
- 兼容性评估:新版本序列化的数据可以被旧版本读取,但反之可能需要适配
- 性能测试:建议在测试环境评估新版本在特定场景下的性能表现
- 配置调整:根据应用特点调整新的缓冲区大小等参数
- 依赖检查:确认所有语言绑定的版本一致性
Apache Fury v0.10.0 通过创新的序列化协议和深度优化,为高性能序列化场景提供了更强大的工具。特别是分块式 Map 序列化和 JavaScript 字符串优化,将显著提升大数据量场景下的系统性能。对于追求极致性能的分布式系统开发者,这次升级提供了更多优化可能性和更灵活的选择。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
410
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
251