vagrant-vsphere 的安装和配置教程
项目基础介绍
vagrant-vsphere 是一个开源项目,为 Vagrant 提供了一个 vSphere 提供程序,使得 Vagrant 能够控制和配置使用 VMware 的虚拟机。这个提供程序是基于 RbVmomi Ruby 接口构建的,该接口是 vSphere API 的 Ruby 实现。通过 vagrant-vsphere,用户可以利用 Vagrant 简化 VMware 环境中的虚拟机部署和管理。
该项目主要使用 Ruby 编程语言。
项目使用的关键技术和框架
- Vagrant: 一个用于创建和管理虚拟环境的工具。
- RbVmomi: VMware vSphere API 的 Ruby SDK,用于与 vSphere 进行交互。
- Gem: Ruby 的包管理器,用于安装项目所需的依赖。
安装和配置准备工作
在开始安装 vagrant-vsphere 之前,请确保您的系统满足以下要求:
- Vagrant 1.6.4 或更高版本
- 安装了 vSphere API 的 VMware
- Ruby 1.9 或更高版本
- 安装了 libxml2、libxml2-dev、libxslt 和 libxslt-dev
还需要确保系统中已安装了 Nokogiri,这是一个用于处理 XML 和 HTML 的 Ruby 库,但请注意,在安装 vagrant-vsphere 插件之前,必须先安装 Nokogiri。
安装步骤
步骤 1:安装 Vagrant
如果您的系统中还没有安装 Vagrant,请访问 Vagrant 官方网站下载并安装适合您操作系统的版本。
步骤 2:安装 vagrant-vsphere 插件
使用以下命令安装 vagrant-vsphere 插件:
vagrant plugin install vagrant-vsphere
如果您希望从源代码安装,首先需要克隆该项目:
git clone https://github.com/nsidc/vagrant-vsphere.git
然后在该目录下构建 gem:
gem build vSphere.gemspec
最后,运行以下命令安装插件:
vagrant plugin install ./vSphere-版本号.gem
请将 版本号 替换为实际的版本号。
步骤 3:创建 vSphere 盒子
在安装了 vagrant-vsphere 插件之后,您需要创建一个 vSphere 盒子。在项目的 example_box 目录中,您会找到一个 metadata.json 文件。使用以下命令创建一个示例盒子:
tar cvzf dummy.box ./metadata.json
步骤 4:配置 Vagrantfile
创建一个 Vagrantfile,并配置如下:
Vagrant.configure("2") do |config|
config.vm.box = 'dummy'
config.vm.box_url = './example_box/dummy.box'
config.vm.provider :vsphere do |vsphere|
vsphere.host = '您的 vSphere 实例主机名'
vsphere.compute_resource_name = '您的计算资源名'
vsphere.resource_pool_name = '您的资源池名'
vsphere.template_name = '/您的虚拟机模板路径'
vsphere.name = '新虚拟机名称'
vsphere.user = '您的 VMware 用户名'
vsphere.password = '您的 VMware 密码'
end
end
确保替换 Vagrantfile 中的占位符,以反映您的 vSphere 环境的实际设置。
步骤 5:启动虚拟机
最后,使用以下命令启动虚拟机:
vagrant up --provider=vsphere
按照以上步骤,您应该能够成功安装和配置 vagrant-vsphere,并开始使用 Vagrant 管理您的 VMware 虚拟机。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00