解决boto3调用Amazon Nova模型时的ValidationException错误
2025-05-25 17:38:29作者:伍希望
在使用boto3 SDK调用Amazon Nova模型进行视频内容分析时,开发者可能会遇到一个常见的ValidationException错误。本文将深入分析这个问题的根源,并提供完整的解决方案。
问题现象
当开发者尝试通过boto3调用Amazon Nova模型的invoke_model方法处理视频文件时,系统会返回如下错误信息:
An error occurred (ValidationException) when calling the InvokeModel operation: Malformed input request: #/messages/0/content/1: required key [toolUse] not found, please reformat your input and try again.
这个错误信息具有一定的误导性,表面上看似乎是缺少了toolUse键,但实际上问题出在请求体的结构上。
错误原因分析
问题的核心在于请求体中视频数据的格式不正确。开发者通常会按照直觉将视频数据直接编码为base64字符串后放入请求体,如下所示:
{
"video": {
"format": "mp4",
"bytes": base64_text
}
}
然而,Amazon Nova API要求视频数据必须包含在一个"source"对象中,正确的格式应该是:
{
"video": {
"format": "mp4",
"source": {
"bytes": base64_text
}
}
}
完整解决方案
以下是修正后的完整代码示例,包含了正确的请求体结构:
import boto3
import os
import base64
import json
def analyze_video(video_filepath):
with open(video_filepath, "rb") as video_file:
base64_text = base64.b64encode(video_file.read()).decode("utf-8")
try:
bedrock = boto3.client(
service_name="bedrock-runtime",
region_name=os.getenv('BEDROCK_REGION')
)
body = [{
"role": "user",
"content": [
{
"text": "请为这个视频生成一个合适的标题"
},
{
"video": {
"format": "mp4",
"source": {
"bytes": base64_text
}
}
}
]
}]
inf_params = {
"maxTokens": 300,
"topP": 0.9,
"temperature": 0.7
}
modelId = 'us.amazon.nova-lite-v1:0'
request_body = {
"schemaVersion": "messages-v1",
"messages": body,
"inferenceConfig": inf_params,
}
response = bedrock.invoke_model(
modelId=modelId,
body=json.dumps(request_body)
)
response_body = json.loads(response.get("body").read())
return response_body.get("content")
except Exception as e:
print(f"调用Amazon Nova模型时发生错误: {str(e)}")
raise
关键改进点
- 视频数据格式修正:将视频数据包装在"source"对象中,符合API规范
- 错误处理优化:提供了更清晰的错误输出和处理逻辑
- 代码结构优化:使代码更易读和维护
最佳实践建议
- 在使用boto3调用AWS服务时,始终参考最新的官方文档
- 对于复杂的API请求,可以先使用AWS CLI测试请求格式,再转换为boto3代码
- 实现完善的错误处理和日志记录机制
- 对于大视频文件,考虑使用流式处理或分块上传
通过遵循这些建议和正确的API格式,开发者可以顺利使用boto3调用Amazon Nova模型进行视频内容分析,避免常见的ValidationException错误。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.26 K

暂无简介
Dart
526
116

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
582

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
42
0