解决boto3调用Amazon Nova模型时的ValidationException错误
2025-05-25 13:42:58作者:伍希望
在使用boto3 SDK调用Amazon Nova模型进行视频内容分析时,开发者可能会遇到一个常见的ValidationException错误。本文将深入分析这个问题的根源,并提供完整的解决方案。
问题现象
当开发者尝试通过boto3调用Amazon Nova模型的invoke_model方法处理视频文件时,系统会返回如下错误信息:
An error occurred (ValidationException) when calling the InvokeModel operation: Malformed input request: #/messages/0/content/1: required key [toolUse] not found, please reformat your input and try again.
这个错误信息具有一定的误导性,表面上看似乎是缺少了toolUse键,但实际上问题出在请求体的结构上。
错误原因分析
问题的核心在于请求体中视频数据的格式不正确。开发者通常会按照直觉将视频数据直接编码为base64字符串后放入请求体,如下所示:
{
"video": {
"format": "mp4",
"bytes": base64_text
}
}
然而,Amazon Nova API要求视频数据必须包含在一个"source"对象中,正确的格式应该是:
{
"video": {
"format": "mp4",
"source": {
"bytes": base64_text
}
}
}
完整解决方案
以下是修正后的完整代码示例,包含了正确的请求体结构:
import boto3
import os
import base64
import json
def analyze_video(video_filepath):
with open(video_filepath, "rb") as video_file:
base64_text = base64.b64encode(video_file.read()).decode("utf-8")
try:
bedrock = boto3.client(
service_name="bedrock-runtime",
region_name=os.getenv('BEDROCK_REGION')
)
body = [{
"role": "user",
"content": [
{
"text": "请为这个视频生成一个合适的标题"
},
{
"video": {
"format": "mp4",
"source": {
"bytes": base64_text
}
}
}
]
}]
inf_params = {
"maxTokens": 300,
"topP": 0.9,
"temperature": 0.7
}
modelId = 'us.amazon.nova-lite-v1:0'
request_body = {
"schemaVersion": "messages-v1",
"messages": body,
"inferenceConfig": inf_params,
}
response = bedrock.invoke_model(
modelId=modelId,
body=json.dumps(request_body)
)
response_body = json.loads(response.get("body").read())
return response_body.get("content")
except Exception as e:
print(f"调用Amazon Nova模型时发生错误: {str(e)}")
raise
关键改进点
- 视频数据格式修正:将视频数据包装在"source"对象中,符合API规范
- 错误处理优化:提供了更清晰的错误输出和处理逻辑
- 代码结构优化:使代码更易读和维护
最佳实践建议
- 在使用boto3调用AWS服务时,始终参考最新的官方文档
- 对于复杂的API请求,可以先使用AWS CLI测试请求格式,再转换为boto3代码
- 实现完善的错误处理和日志记录机制
- 对于大视频文件,考虑使用流式处理或分块上传
通过遵循这些建议和正确的API格式,开发者可以顺利使用boto3调用Amazon Nova模型进行视频内容分析,避免常见的ValidationException错误。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
131
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
629
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
593
129
React Native鸿蒙化仓库
JavaScript
230
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
123
591
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.52 K