CUTLASS项目中MMA(矩阵乘累加)操作的技术解析
2025-05-30 13:28:44作者:苗圣禹Peter
什么是MMA
在NVIDIA的CUTLASS项目中,MMA是Matrix Multiply-Accumulate(矩阵乘累加)的缩写,这是一种在GPU上执行高效矩阵运算的核心操作。MMA操作特别针对NVIDIA GPU中的Tensor Core进行了优化,能够显著提升深度学习和其他计算密集型应用中的矩阵运算性能。
MMA在CUTLASS中的实现
在CUTLASS的代码中,我们经常能看到类似如下的注释和代码片段:
// 跨线程划分sA、sB和sC tile用于MMA操作
Tensor tCsA = thr_mma.partition_A(sA);                            // (MMA,MMA_M,MMA_K)
Tensor tCsB = thr_mma.partition_B(sB);                            // (MMA,MMA_N,MMA_K)
// 为MMA操作创建寄存器tensor
Tensor tCrA = thr_mma.make_fragment_A(tCsA);                      // (MMA,MMA_M,MMA_K)
Tensor tCrB = thr_mma.make_fragment_B(tCsB);                      // (MMA,MMA_N,MMA_K)
这里的(MMA,MMA_M,MMA_K)等标记代表了张量的形状维度,其中:
- MMA维度表示Tensor Core指令实际使用的数据分区模式
 - MMA_M和MMA_N表示矩阵的行和列维度
 - MMA_K表示内积维度
 
MMA与传统FMA的区别
传统的FMA(Fused Multiply-Add,融合乘加)指令通常处理标量或小向量数据,而MMA指令专门针对矩阵运算进行了优化:
- 数据规模:FMA通常处理size-1的数据,而Tensor Core的MMA可以处理更大的数据分区
 - 并行度:MMA能够同时处理矩阵块运算,显著提高吞吐量
 - 专用硬件:MMA利用GPU中的Tensor Core专用硬件单元,能效比更高
 
MMA在深度学习中的应用
MMA操作特别适合深度学习中的以下场景:
- 全连接层计算:大规模矩阵乘法
 - 卷积运算:通过im2col转换后的矩阵乘法
 - 注意力机制:QKV矩阵的乘法和softmax计算
 
性能优势
使用MMA操作相比传统CUDA核心的FMA操作有以下优势:
- 更高的计算密度:每个时钟周期能完成更多运算
 - 更高的能效比:专用硬件单元功耗更低
 - 更少的内存访问:一次操作处理更大数据块
 
总结
CUTLASS项目中的MMA操作代表了现代GPU计算的最前沿技术,它通过充分利用Tensor Core硬件,为矩阵运算提供了前所未有的性能。理解MMA的概念和实现方式,对于开发高性能GPU计算应用,特别是深度学习框架和库的开发者来说至关重要。随着AI模型规模的不断扩大,MMA这样的高效矩阵运算技术将变得越来越重要。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443