CUTLASS项目中MMA(矩阵乘累加)操作的技术解析
2025-05-30 16:37:20作者:苗圣禹Peter
什么是MMA
在NVIDIA的CUTLASS项目中,MMA是Matrix Multiply-Accumulate(矩阵乘累加)的缩写,这是一种在GPU上执行高效矩阵运算的核心操作。MMA操作特别针对NVIDIA GPU中的Tensor Core进行了优化,能够显著提升深度学习和其他计算密集型应用中的矩阵运算性能。
MMA在CUTLASS中的实现
在CUTLASS的代码中,我们经常能看到类似如下的注释和代码片段:
// 跨线程划分sA、sB和sC tile用于MMA操作
Tensor tCsA = thr_mma.partition_A(sA); // (MMA,MMA_M,MMA_K)
Tensor tCsB = thr_mma.partition_B(sB); // (MMA,MMA_N,MMA_K)
// 为MMA操作创建寄存器tensor
Tensor tCrA = thr_mma.make_fragment_A(tCsA); // (MMA,MMA_M,MMA_K)
Tensor tCrB = thr_mma.make_fragment_B(tCsB); // (MMA,MMA_N,MMA_K)
这里的(MMA,MMA_M,MMA_K)等标记代表了张量的形状维度,其中:
- MMA维度表示Tensor Core指令实际使用的数据分区模式
- MMA_M和MMA_N表示矩阵的行和列维度
- MMA_K表示内积维度
MMA与传统FMA的区别
传统的FMA(Fused Multiply-Add,融合乘加)指令通常处理标量或小向量数据,而MMA指令专门针对矩阵运算进行了优化:
- 数据规模:FMA通常处理size-1的数据,而Tensor Core的MMA可以处理更大的数据分区
- 并行度:MMA能够同时处理矩阵块运算,显著提高吞吐量
- 专用硬件:MMA利用GPU中的Tensor Core专用硬件单元,能效比更高
MMA在深度学习中的应用
MMA操作特别适合深度学习中的以下场景:
- 全连接层计算:大规模矩阵乘法
- 卷积运算:通过im2col转换后的矩阵乘法
- 注意力机制:QKV矩阵的乘法和softmax计算
性能优势
使用MMA操作相比传统CUDA核心的FMA操作有以下优势:
- 更高的计算密度:每个时钟周期能完成更多运算
- 更高的能效比:专用硬件单元功耗更低
- 更少的内存访问:一次操作处理更大数据块
总结
CUTLASS项目中的MMA操作代表了现代GPU计算的最前沿技术,它通过充分利用Tensor Core硬件,为矩阵运算提供了前所未有的性能。理解MMA的概念和实现方式,对于开发高性能GPU计算应用,特别是深度学习框架和库的开发者来说至关重要。随着AI模型规模的不断扩大,MMA这样的高效矩阵运算技术将变得越来越重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248