CUTLASS项目中MMA(矩阵乘累加)操作的技术解析
2025-05-30 22:41:01作者:苗圣禹Peter
什么是MMA
在NVIDIA的CUTLASS项目中,MMA是Matrix Multiply-Accumulate(矩阵乘累加)的缩写,这是一种在GPU上执行高效矩阵运算的核心操作。MMA操作特别针对NVIDIA GPU中的Tensor Core进行了优化,能够显著提升深度学习和其他计算密集型应用中的矩阵运算性能。
MMA在CUTLASS中的实现
在CUTLASS的代码中,我们经常能看到类似如下的注释和代码片段:
// 跨线程划分sA、sB和sC tile用于MMA操作
Tensor tCsA = thr_mma.partition_A(sA); // (MMA,MMA_M,MMA_K)
Tensor tCsB = thr_mma.partition_B(sB); // (MMA,MMA_N,MMA_K)
// 为MMA操作创建寄存器tensor
Tensor tCrA = thr_mma.make_fragment_A(tCsA); // (MMA,MMA_M,MMA_K)
Tensor tCrB = thr_mma.make_fragment_B(tCsB); // (MMA,MMA_N,MMA_K)
这里的(MMA,MMA_M,MMA_K)
等标记代表了张量的形状维度,其中:
- MMA维度表示Tensor Core指令实际使用的数据分区模式
- MMA_M和MMA_N表示矩阵的行和列维度
- MMA_K表示内积维度
MMA与传统FMA的区别
传统的FMA(Fused Multiply-Add,融合乘加)指令通常处理标量或小向量数据,而MMA指令专门针对矩阵运算进行了优化:
- 数据规模:FMA通常处理size-1的数据,而Tensor Core的MMA可以处理更大的数据分区
- 并行度:MMA能够同时处理矩阵块运算,显著提高吞吐量
- 专用硬件:MMA利用GPU中的Tensor Core专用硬件单元,能效比更高
MMA在深度学习中的应用
MMA操作特别适合深度学习中的以下场景:
- 全连接层计算:大规模矩阵乘法
- 卷积运算:通过im2col转换后的矩阵乘法
- 注意力机制:QKV矩阵的乘法和softmax计算
性能优势
使用MMA操作相比传统CUDA核心的FMA操作有以下优势:
- 更高的计算密度:每个时钟周期能完成更多运算
- 更高的能效比:专用硬件单元功耗更低
- 更少的内存访问:一次操作处理更大数据块
总结
CUTLASS项目中的MMA操作代表了现代GPU计算的最前沿技术,它通过充分利用Tensor Core硬件,为矩阵运算提供了前所未有的性能。理解MMA的概念和实现方式,对于开发高性能GPU计算应用,特别是深度学习框架和库的开发者来说至关重要。随着AI模型规模的不断扩大,MMA这样的高效矩阵运算技术将变得越来越重要。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++099AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133