OpenGraph Python 模块技术文档
2024-12-26 09:43:41作者:瞿蔚英Wynne
OpenGraph 是一个用于解析 Open Graph Protocol 的 Python 模块。Open Graph Protocol 是一种用于在社交图谱中表示网页内容的协议。本文将详细介绍如何安装、使用 OpenGraph 模块,并提供 API 使用文档。
1. 安装指南
要安装 OpenGraph 模块,您可以使用 pip
命令。以下是安装步骤:
$ pip install opengraph
安装完成后,您可以在 Python 脚本中导入并使用该模块。
2. 项目的使用说明
OpenGraph 模块提供了多种使用方式,包括从 URL 解析、从 HTML 解析、生成 JSON 或 HTML 输出等。以下是具体的使用示例。
2.1 从 URL 解析
您可以通过指定 URL 来解析网页中的 Open Graph 数据:
import opengraph
# 从 URL 解析 Open Graph 数据
video = opengraph.OpenGraph(url="http://www.youtube.com/watch?v=q3ixBmDzylQ")
# 检查数据是否有效
if video.is_valid():
for key, value in video.items():
print(f"{key:15} => {value}")
2.2 从 HTML 解析
如果您已经获取了网页的 HTML 内容,可以直接从 HTML 中解析 Open Graph 数据:
import opengraph
# 定义 HTML 内容
HTML = """
<html xmlns:og="http://ogp.me/ns#">
<head>
<title>The Rock (1996)</title>
<meta property="og:title" content="The Rock" />
<meta property="og:type" content="movie" />
<meta property="og:url" content="http://www.imdb.com/title/tt0117500/" />
<meta property="og:image" content="http://ia.media-imdb.com/images/rock.jpg" />
</head>
</html>
"""
# 从 HTML 解析 Open Graph 数据
movie = opengraph.OpenGraph(html=HTML)
# 检查数据是否有效
if movie.is_valid():
for key, value in movie.items():
print(f"{key:15} => {value}")
2.3 生成 JSON 或 HTML
您可以将解析后的 Open Graph 数据转换为 JSON 或 HTML 格式:
import opengraph
# 解析 Open Graph 数据
ogp = opengraph.OpenGraph(url="http://ogp.me/")
# 生成 JSON 输出
print(ogp.to_json())
# 生成 HTML 输出
print(ogp.to_html())
3. 项目 API 使用文档
OpenGraph 模块提供了以下主要 API:
3.1 OpenGraph(url=None, html=None)
- 参数:
url
: 要解析的网页 URL。html
: 要解析的 HTML 内容。
- 返回值: 返回一个
OpenGraph
对象。
3.2 is_valid()
- 返回值: 返回一个布尔值,表示解析的 Open Graph 数据是否有效。
3.3 items()
- 返回值: 返回一个包含所有 Open Graph 数据的字典项。
3.4 to_json()
- 返回值: 返回一个 JSON 格式的字符串,表示 Open Graph 数据。
3.5 to_html()
- 返回值: 返回一个 HTML 格式的字符串,表示 Open Graph 数据。
4. 项目安装方式
OpenGraph 模块可以通过 pip
命令进行安装,具体步骤如下:
$ pip install opengraph
安装完成后,您可以在 Python 脚本中导入并使用该模块。
通过本文档,您应该能够顺利安装并使用 OpenGraph 模块来解析和生成 Open Graph 数据。如果您有任何问题,请参考模块的官方文档或社区支持。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193