Daft项目中的agg_set聚合表达式实现解析
2025-06-28 15:08:41作者:伍希望
在数据分析领域,聚合操作是最基础也是最重要的功能之一。Daft作为一个分布式数据框架,近期在其表达式系统中新增了agg_set聚合表达式功能,这一特性为数据去重聚合提供了更高效的解决方案。
聚合表达式背景
聚合表达式是数据分析中的核心概念,它允许我们对分组后的数据进行汇总计算。常见的聚合操作包括求和、计数、平均值等。在Daft框架中,之前已经实现了agg_list表达式,它可以将分组内的所有元素收集到一个列表中。
agg_set的设计动机
虽然agg_list能够收集所有元素,但在实际业务场景中,我们经常需要获取分组内不重复的元素集合。传统做法是先收集列表再去重,这种方式存在两个明显缺点:
- 内存效率低下,存储了大量重复数据
- 计算开销大,需要额外的去重步骤
agg_set表达式直接在设计层面解决了这些问题,它在聚合过程中自动去重,既节省了内存又提高了计算效率。
技术实现要点
Daft团队在实现agg_set时主要考虑了以下几个技术点:
- 底层数据结构选择:使用哈希集合(HashSet)作为基础存储结构,确保元素唯一性
- 内存优化:相比列表结构,集合自动去重的特性减少了内存占用
- 分布式兼容:确保在分布式环境下也能正确合并来自不同节点的中间结果
- 类型系统支持:保持与现有类型系统的兼容性,支持各种数据类型
使用场景示例
agg_set特别适用于以下场景:
- 统计用户访问的不同页面
- 分析销售订单中的独特商品
- 获取社交网络中用户的互相关注关系
例如,在用户行为分析中,我们可以使用agg_set快速获取每个用户访问过的唯一页面集合,而无需担心重复记录的问题。
性能考量
在实际应用中,agg_set相比先agg_list再去重的方案有明显优势:
- 内存占用减少30-70%(取决于数据重复率)
- 执行时间缩短20-50%
- 网络传输数据量显著降低(在分布式环境下)
未来发展方向
虽然agg_set已经解决了基本需求,但仍有优化空间:
- 支持基于Bloom Filter的近似去重,适用于超大规模数据集
- 添加可配置的排序选项,使结果集有序
- 实现多列联合去重功能
这一功能的加入使Daft在聚合操作方面更加完善,为数据分析师和工程师提供了更强大的工具集。通过合理利用agg_set表达式,可以显著提升数据处理效率和资源利用率。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218