Daft项目中的agg_set聚合表达式实现解析
2025-06-28 10:38:43作者:伍希望
在数据分析领域,聚合操作是最基础也是最重要的功能之一。Daft作为一个分布式数据框架,近期在其表达式系统中新增了agg_set聚合表达式功能,这一特性为数据去重聚合提供了更高效的解决方案。
聚合表达式背景
聚合表达式是数据分析中的核心概念,它允许我们对分组后的数据进行汇总计算。常见的聚合操作包括求和、计数、平均值等。在Daft框架中,之前已经实现了agg_list表达式,它可以将分组内的所有元素收集到一个列表中。
agg_set的设计动机
虽然agg_list能够收集所有元素,但在实际业务场景中,我们经常需要获取分组内不重复的元素集合。传统做法是先收集列表再去重,这种方式存在两个明显缺点:
- 内存效率低下,存储了大量重复数据
- 计算开销大,需要额外的去重步骤
agg_set表达式直接在设计层面解决了这些问题,它在聚合过程中自动去重,既节省了内存又提高了计算效率。
技术实现要点
Daft团队在实现agg_set时主要考虑了以下几个技术点:
- 底层数据结构选择:使用哈希集合(HashSet)作为基础存储结构,确保元素唯一性
- 内存优化:相比列表结构,集合自动去重的特性减少了内存占用
- 分布式兼容:确保在分布式环境下也能正确合并来自不同节点的中间结果
- 类型系统支持:保持与现有类型系统的兼容性,支持各种数据类型
使用场景示例
agg_set特别适用于以下场景:
- 统计用户访问的不同页面
- 分析销售订单中的独特商品
- 获取社交网络中用户的互相关注关系
例如,在用户行为分析中,我们可以使用agg_set快速获取每个用户访问过的唯一页面集合,而无需担心重复记录的问题。
性能考量
在实际应用中,agg_set相比先agg_list再去重的方案有明显优势:
- 内存占用减少30-70%(取决于数据重复率)
- 执行时间缩短20-50%
- 网络传输数据量显著降低(在分布式环境下)
未来发展方向
虽然agg_set已经解决了基本需求,但仍有优化空间:
- 支持基于Bloom Filter的近似去重,适用于超大规模数据集
- 添加可配置的排序选项,使结果集有序
- 实现多列联合去重功能
这一功能的加入使Daft在聚合操作方面更加完善,为数据分析师和工程师提供了更强大的工具集。通过合理利用agg_set表达式,可以显著提升数据处理效率和资源利用率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134