Daft项目中的agg_set聚合表达式实现解析
2025-06-28 15:45:20作者:伍希望
在数据分析领域,聚合操作是最基础也是最重要的功能之一。Daft作为一个分布式数据框架,近期在其表达式系统中新增了agg_set聚合表达式功能,这一特性为数据去重聚合提供了更高效的解决方案。
聚合表达式背景
聚合表达式是数据分析中的核心概念,它允许我们对分组后的数据进行汇总计算。常见的聚合操作包括求和、计数、平均值等。在Daft框架中,之前已经实现了agg_list表达式,它可以将分组内的所有元素收集到一个列表中。
agg_set的设计动机
虽然agg_list能够收集所有元素,但在实际业务场景中,我们经常需要获取分组内不重复的元素集合。传统做法是先收集列表再去重,这种方式存在两个明显缺点:
- 内存效率低下,存储了大量重复数据
- 计算开销大,需要额外的去重步骤
agg_set表达式直接在设计层面解决了这些问题,它在聚合过程中自动去重,既节省了内存又提高了计算效率。
技术实现要点
Daft团队在实现agg_set时主要考虑了以下几个技术点:
- 底层数据结构选择:使用哈希集合(HashSet)作为基础存储结构,确保元素唯一性
- 内存优化:相比列表结构,集合自动去重的特性减少了内存占用
- 分布式兼容:确保在分布式环境下也能正确合并来自不同节点的中间结果
- 类型系统支持:保持与现有类型系统的兼容性,支持各种数据类型
使用场景示例
agg_set特别适用于以下场景:
- 统计用户访问的不同页面
- 分析销售订单中的独特商品
- 获取社交网络中用户的互相关注关系
例如,在用户行为分析中,我们可以使用agg_set快速获取每个用户访问过的唯一页面集合,而无需担心重复记录的问题。
性能考量
在实际应用中,agg_set相比先agg_list再去重的方案有明显优势:
- 内存占用减少30-70%(取决于数据重复率)
- 执行时间缩短20-50%
- 网络传输数据量显著降低(在分布式环境下)
未来发展方向
虽然agg_set已经解决了基本需求,但仍有优化空间:
- 支持基于Bloom Filter的近似去重,适用于超大规模数据集
- 添加可配置的排序选项,使结果集有序
- 实现多列联合去重功能
这一功能的加入使Daft在聚合操作方面更加完善,为数据分析师和工程师提供了更强大的工具集。通过合理利用agg_set表达式,可以显著提升数据处理效率和资源利用率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210