PINTO_model_zoo中CREStereo模型的TensorRT优化与使用指南
2025-06-18 00:58:43作者:冯梦姬Eddie
概述
CREStereo是一种基于深度学习的立体匹配算法,能够从双目图像中精确计算视差图。在PINTO_model_zoo项目中,提供了多种CREStereo模型的ONNX格式实现,包括不同分辨率、迭代次数和精度版本。本文将重点介绍如何针对TensorRT推理环境优化CREStereo模型,特别是"next"版本模型的使用方法。
CREStereo模型架构特点
CREStereo模型采用迭代优化的设计思想,通过多次迭代逐步优化视差图。标准模型通常包含以下关键组件:
- 特征提取网络:从左右图像中提取多层次特征
- 代价体构建模块:建立特征间的相关性
- 迭代优化模块:通过GRU单元逐步优化视差估计
- 上采样模块:将低分辨率视差图上采样至输入图像尺寸
"next"版本模型的特殊之处
"next"版本模型是标准CREStereo模型的一个变体,它允许外部输入初始视差图(flow)作为网络的初始估计。这种设计带来了几个优势:
- 可以与传统立体匹配算法(SGBM、BM等)结合使用,用传统算法的输出作为初始估计
- 支持多阶段处理,将前一次迭代的输出作为下一次迭代的输入
- 提高了算法的灵活性,可以根据需要调整初始估计来源
模型转换与优化
要将标准CREStereo模型转换为"next"版本,可以使用ONNX模型操作工具进行子图提取。关键步骤如下:
-
识别模型中的关键节点:
- 输入节点:next_left(左图)、next_right(右图)、init_output(初始视差)
- 输出节点:next_output(优化后的视差)
-
使用sne4onnx工具提取相关子图:
sne4onnx \ --input_onnx_file_path crestereo_combined_iter20_480x640.onnx \ --input_op_names next_left next_right init_output \ --output_op_names next_output \ --output_onnx_file_path crestereo_combined_iter20_480x640_next.onnx -
转换后的模型可以直接用于TensorRT推理,支持FP16精度优化
实际应用建议
-
初始视差来源选择:
- 可以使用传统立体匹配算法生成初始视差
- 也可以使用低分辨率CREStereo模型的输出
- 甚至可以简单使用零初始化
-
性能优化技巧:
- 对于实时应用,可以适当减少迭代次数
- 考虑使用TensorRT的FP16或INT8量化
- 根据目标平台调整输入分辨率
-
精度提升方法:
- 使用更精确的传统算法提供初始估计
- 增加迭代次数
- 使用更高分辨率的模型版本
总结
CREStereo的"next"版本模型通过引入外部初始视差输入,大大增强了算法的灵活性和实用性。结合TensorRT的优化能力,可以在各种硬件平台上实现高效的立体匹配。开发者可以根据具体应用场景,在速度和精度之间找到最佳平衡点。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210