首页
/ 基于SAM和CLIP的零样本医学图像分割方法SaLIP被收录至awesome-segment-anything项目

基于SAM和CLIP的零样本医学图像分割方法SaLIP被收录至awesome-segment-anything项目

2025-07-10 15:46:55作者:裘晴惠Vivianne

在医学图像分析领域,零样本分割一直是一个具有挑战性的研究方向。近期,一篇题为《Test-Time Adaptation with SaLIP: A Cascade of SAM and CLIP for Zero shot Medical Image Segmentation》的论文引起了广泛关注。该论文已被CVPR 2024 Workshops接收,其创新性地结合了SAM(Segment Anything Model)和CLIP(Contrastive Language-Image Pretraining)两大前沿模型,提出了一种名为SaLIP的新型零样本医学图像分割框架。

SaLIP方法的核心思想是通过级联SAM和CLIP模型,实现无需特定训练数据的医学图像分割能力。SAM作为强大的通用分割模型,提供了基础的分割能力;而CLIP则通过其强大的视觉-语言对齐能力,为分割任务提供语义指导。这种组合使得模型能够在测试阶段自适应地进行医学图像分割,特别适合医学领域标注数据稀缺的场景。

该方法的主要技术贡献包括:

  1. 创新性地将SAM和CLIP结合,构建了一个端到端的零样本分割框架
  2. 设计了有效的测试时自适应策略,使模型能够适应不同的医学图像模态
  3. 在多个医学图像数据集上验证了方法的有效性,展示了优异的零样本分割性能

由于该方法的重要性和创新性,它已被收录至awesome-segment-anything项目中。这是一个专注于收集和整理与SAM模型相关优秀工作的开源项目,由社区开发者Hedlen维护。该项目的收录标准严格,只选择在该领域具有显著贡献的研究成果。

SaLIP的开源代码已在GitHub上公开,研究团队提供了完整的实现细节和使用说明,方便研究者和开发者复现结果或应用于实际项目。这种开放共享的精神也体现了当前AI研究社区的良好实践。

对于医学图像分析领域的研究者和从业者来说,SaLIP提供了一种新的思路来解决数据稀缺条件下的分割问题。其零样本学习的能力尤其适合临床应用场景,有望推动医学AI技术的实际落地。随着更多研究者对该方法的验证和改进,相信它将在医学图像分析领域发挥更大的作用。

登录后查看全文
热门项目推荐