基于SAM和CLIP的零样本医学图像分割方法SaLIP被收录至awesome-segment-anything项目
在医学图像分析领域,零样本分割一直是一个具有挑战性的研究方向。近期,一篇题为《Test-Time Adaptation with SaLIP: A Cascade of SAM and CLIP for Zero shot Medical Image Segmentation》的论文引起了广泛关注。该论文已被CVPR 2024 Workshops接收,其创新性地结合了SAM(Segment Anything Model)和CLIP(Contrastive Language-Image Pretraining)两大前沿模型,提出了一种名为SaLIP的新型零样本医学图像分割框架。
SaLIP方法的核心思想是通过级联SAM和CLIP模型,实现无需特定训练数据的医学图像分割能力。SAM作为强大的通用分割模型,提供了基础的分割能力;而CLIP则通过其强大的视觉-语言对齐能力,为分割任务提供语义指导。这种组合使得模型能够在测试阶段自适应地进行医学图像分割,特别适合医学领域标注数据稀缺的场景。
该方法的主要技术贡献包括:
- 创新性地将SAM和CLIP结合,构建了一个端到端的零样本分割框架
- 设计了有效的测试时自适应策略,使模型能够适应不同的医学图像模态
- 在多个医学图像数据集上验证了方法的有效性,展示了优异的零样本分割性能
由于该方法的重要性和创新性,它已被收录至awesome-segment-anything项目中。这是一个专注于收集和整理与SAM模型相关优秀工作的开源项目,由社区开发者Hedlen维护。该项目的收录标准严格,只选择在该领域具有显著贡献的研究成果。
SaLIP的开源代码已在GitHub上公开,研究团队提供了完整的实现细节和使用说明,方便研究者和开发者复现结果或应用于实际项目。这种开放共享的精神也体现了当前AI研究社区的良好实践。
对于医学图像分析领域的研究者和从业者来说,SaLIP提供了一种新的思路来解决数据稀缺条件下的分割问题。其零样本学习的能力尤其适合临床应用场景,有望推动医学AI技术的实际落地。随着更多研究者对该方法的验证和改进,相信它将在医学图像分析领域发挥更大的作用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00