基于SAM和CLIP的零样本医学图像分割方法SaLIP被收录至awesome-segment-anything项目
在医学图像分析领域,零样本分割一直是一个具有挑战性的研究方向。近期,一篇题为《Test-Time Adaptation with SaLIP: A Cascade of SAM and CLIP for Zero shot Medical Image Segmentation》的论文引起了广泛关注。该论文已被CVPR 2024 Workshops接收,其创新性地结合了SAM(Segment Anything Model)和CLIP(Contrastive Language-Image Pretraining)两大前沿模型,提出了一种名为SaLIP的新型零样本医学图像分割框架。
SaLIP方法的核心思想是通过级联SAM和CLIP模型,实现无需特定训练数据的医学图像分割能力。SAM作为强大的通用分割模型,提供了基础的分割能力;而CLIP则通过其强大的视觉-语言对齐能力,为分割任务提供语义指导。这种组合使得模型能够在测试阶段自适应地进行医学图像分割,特别适合医学领域标注数据稀缺的场景。
该方法的主要技术贡献包括:
- 创新性地将SAM和CLIP结合,构建了一个端到端的零样本分割框架
- 设计了有效的测试时自适应策略,使模型能够适应不同的医学图像模态
- 在多个医学图像数据集上验证了方法的有效性,展示了优异的零样本分割性能
由于该方法的重要性和创新性,它已被收录至awesome-segment-anything项目中。这是一个专注于收集和整理与SAM模型相关优秀工作的开源项目,由社区开发者Hedlen维护。该项目的收录标准严格,只选择在该领域具有显著贡献的研究成果。
SaLIP的开源代码已在GitHub上公开,研究团队提供了完整的实现细节和使用说明,方便研究者和开发者复现结果或应用于实际项目。这种开放共享的精神也体现了当前AI研究社区的良好实践。
对于医学图像分析领域的研究者和从业者来说,SaLIP提供了一种新的思路来解决数据稀缺条件下的分割问题。其零样本学习的能力尤其适合临床应用场景,有望推动医学AI技术的实际落地。随着更多研究者对该方法的验证和改进,相信它将在医学图像分析领域发挥更大的作用。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









