tf-metal-experiments 的项目扩展与二次开发
2025-05-26 10:21:11作者:胡易黎Nicole
项目的基础介绍
tf-metal-experiments 是一个开源项目,旨在探索 TensorFlow 在 Apple Silicon(如 M1 系列芯片)上的 Metal 后端性能。该项目通过一系列基准测试和实验,展示了 M1 Max 芯片在不同深度学习模型训练和推理任务中的性能表现,为在苹果硬件上优化 TensorFlow 提供了宝贵的实验数据和代码。
项目的核心功能
该项目的核心功能是进行 TensorFlow 在 Apple Silicon 上的性能基准测试,包括但不限于以下模型:
- ResNet50
- MobileNetV2
- DistilBERT
- BERTLarge
基准测试的结果涵盖了吞吐量、峰值功耗和内存占用等关键性能指标。
项目使用了哪些框架或库?
- TensorFlow:用于构建和训练深度学习模型。
- HuggingFace Transformers:用于处理 Transformer 类型的模型。
- regex:一个正则表达式库,用于处理字符串匹配。
- ipywidgets:用于 Jupyter Notebook 中的交互式小部件。
项目的代码目录及介绍
项目的代码目录主要包括以下部分:
benchmark_coreml_infer.py:用于 CoreML 推理的基准测试。burn.py:未知的脚本文件,可能用于测试或压力测试。bw_benchmark.py:带宽基准测试。conv_benchmark.py:卷积操作基准测试。coreml_conv.py和coreml_matmul.py:可能用于 CoreML 的卷积和矩阵乘法操作测试。infer_plot.ipynb:一个 Jupyter Notebook 文件,用于绘制推理性能图。model_library.py:模型库,包含各种模型的定义。tflops_sweep.py:用于测量 TensorFlow 在不同问题大小下的 TFLOPS。train_benchmark.py:训练基准测试脚本。unified_mem_benchmark.py:统一内存基准测试。
对项目进行扩展或者二次开发的方向
-
增加模型支持:目前项目支持的模型有限,可以扩展更多的深度学习模型,特别是那些在 Apple Silicon 上表现优异的模型。
-
优化性能测试:可以通过引入更多的性能指标,如延迟、能效等,来丰富性能测试的维度。
-
扩展到其他硬件:虽然项目专注于 Apple Silicon,但可以扩展到其他支持 Metal 的硬件平台。
-
集成其他工具:集成如 TensorBoard 等可视化工具,帮助开发者更直观地分析性能数据。
-
开源社区合作:鼓励社区贡献者参与,通过社区的力量不断完善和优化项目。
通过上述方向的扩展和二次开发,tf-metal-experiments 项目有望成为 TensorFlow 在 Apple Silicon 上优化的标杆项目。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137