Distil-Whisper训练数据准备中的文本列选择问题分析
2025-06-17 22:41:46作者:齐添朝
在语音识别模型的训练过程中,数据准备是一个关键环节。本文针对Distil-Whisper项目在准备训练数据时遇到的文本列选择问题进行分析,特别关注VoxPopuli数据集的处理方法。
数据集文本列差异分析
Distil-Whisper项目使用了三个主要的开源语音数据集进行训练,这些数据集在文本列的命名和内容上存在显著差异:
- Multilingual LibriSpeech数据集使用"text"列存储转录文本
- Common Voice 13数据集使用"sentence"列存储转录文本
- VoxPopuli数据集则提供了"raw_text"和"normalized_text"两列文本
VoxPopuli数据集的特有问题
VoxPopuli数据集存在一个特殊问题:其"raw_text"列中约3%的样本(5463/182482)包含空字符串。这些样本虽然"raw_text"为空,但对应的"normalized_text"列却包含有效的标准化文本内容。
这种数据质量问题会导致在伪标注过程中出现"ValueError: one or more references are empty strings"的错误,使得整个处理流程在运行数小时后失败。
解决方案与技术建议
针对VoxPopuli数据集的问题,推荐采用以下处理方案:
-
使用标准化文本列:由于伪标注过程中的WER计算是基于标准化文本的,直接使用"normalized_text"列是最安全的选择。这也是Distil-Whisper官方数据集采用的方法。
-
数据过滤处理:如果确实需要使用原始文本列("raw_text"),必须在预处理阶段使用过滤方法移除空文本样本。可以使用Hugging Face数据集库的filter方法实现:
raw_datasets = raw_datasets.filter(
lambda x: len(x["raw_text"]) > 0,
num_proc=num_workers,
desc="Filtering out empty transcriptions",
)
实践建议
在实际应用中,建议开发者:
- 仔细检查每个数据集的文本列定义和内容质量
- 对于包含多个文本列的数据集,优先选择标准化后的文本列
- 在处理前进行必要的数据质量检查,避免运行时错误
- 参考成熟项目的处理方式,如Distil-Whisper官方数据集的做法
通过正确处理文本列的选择问题,可以确保语音识别模型训练数据的质量,提高模型训练的成功率和最终性能。
登录后查看全文
热门项目推荐
相关项目推荐
暂无数据
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
415
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
612
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141