Distil-Whisper训练数据准备中的文本列选择问题分析
2025-06-17 22:41:46作者:齐添朝
在语音识别模型的训练过程中,数据准备是一个关键环节。本文针对Distil-Whisper项目在准备训练数据时遇到的文本列选择问题进行分析,特别关注VoxPopuli数据集的处理方法。
数据集文本列差异分析
Distil-Whisper项目使用了三个主要的开源语音数据集进行训练,这些数据集在文本列的命名和内容上存在显著差异:
- Multilingual LibriSpeech数据集使用"text"列存储转录文本
- Common Voice 13数据集使用"sentence"列存储转录文本
- VoxPopuli数据集则提供了"raw_text"和"normalized_text"两列文本
VoxPopuli数据集的特有问题
VoxPopuli数据集存在一个特殊问题:其"raw_text"列中约3%的样本(5463/182482)包含空字符串。这些样本虽然"raw_text"为空,但对应的"normalized_text"列却包含有效的标准化文本内容。
这种数据质量问题会导致在伪标注过程中出现"ValueError: one or more references are empty strings"的错误,使得整个处理流程在运行数小时后失败。
解决方案与技术建议
针对VoxPopuli数据集的问题,推荐采用以下处理方案:
-
使用标准化文本列:由于伪标注过程中的WER计算是基于标准化文本的,直接使用"normalized_text"列是最安全的选择。这也是Distil-Whisper官方数据集采用的方法。
-
数据过滤处理:如果确实需要使用原始文本列("raw_text"),必须在预处理阶段使用过滤方法移除空文本样本。可以使用Hugging Face数据集库的filter方法实现:
raw_datasets = raw_datasets.filter(
lambda x: len(x["raw_text"]) > 0,
num_proc=num_workers,
desc="Filtering out empty transcriptions",
)
实践建议
在实际应用中,建议开发者:
- 仔细检查每个数据集的文本列定义和内容质量
- 对于包含多个文本列的数据集,优先选择标准化后的文本列
- 在处理前进行必要的数据质量检查,避免运行时错误
- 参考成熟项目的处理方式,如Distil-Whisper官方数据集的做法
通过正确处理文本列的选择问题,可以确保语音识别模型训练数据的质量,提高模型训练的成功率和最终性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19