Distil-Whisper训练数据准备中的文本列选择问题分析
2025-06-17 03:08:54作者:齐添朝
在语音识别模型的训练过程中,数据准备是一个关键环节。本文针对Distil-Whisper项目在准备训练数据时遇到的文本列选择问题进行分析,特别关注VoxPopuli数据集的处理方法。
数据集文本列差异分析
Distil-Whisper项目使用了三个主要的开源语音数据集进行训练,这些数据集在文本列的命名和内容上存在显著差异:
- Multilingual LibriSpeech数据集使用"text"列存储转录文本
- Common Voice 13数据集使用"sentence"列存储转录文本
- VoxPopuli数据集则提供了"raw_text"和"normalized_text"两列文本
VoxPopuli数据集的特有问题
VoxPopuli数据集存在一个特殊问题:其"raw_text"列中约3%的样本(5463/182482)包含空字符串。这些样本虽然"raw_text"为空,但对应的"normalized_text"列却包含有效的标准化文本内容。
这种数据质量问题会导致在伪标注过程中出现"ValueError: one or more references are empty strings"的错误,使得整个处理流程在运行数小时后失败。
解决方案与技术建议
针对VoxPopuli数据集的问题,推荐采用以下处理方案:
-
使用标准化文本列:由于伪标注过程中的WER计算是基于标准化文本的,直接使用"normalized_text"列是最安全的选择。这也是Distil-Whisper官方数据集采用的方法。
-
数据过滤处理:如果确实需要使用原始文本列("raw_text"),必须在预处理阶段使用过滤方法移除空文本样本。可以使用Hugging Face数据集库的filter方法实现:
raw_datasets = raw_datasets.filter(
lambda x: len(x["raw_text"]) > 0,
num_proc=num_workers,
desc="Filtering out empty transcriptions",
)
实践建议
在实际应用中,建议开发者:
- 仔细检查每个数据集的文本列定义和内容质量
- 对于包含多个文本列的数据集,优先选择标准化后的文本列
- 在处理前进行必要的数据质量检查,避免运行时错误
- 参考成熟项目的处理方式,如Distil-Whisper官方数据集的做法
通过正确处理文本列的选择问题,可以确保语音识别模型训练数据的质量,提高模型训练的成功率和最终性能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
644
149
Ascend Extension for PyTorch
Python
204
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
284
React Native鸿蒙化仓库
JavaScript
249
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
634
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873