Equinox项目中的GPU直接序列化到磁盘技术解析
2025-07-02 12:45:32作者:董灵辛Dennis
背景介绍
在深度学习模型训练过程中,模型检查点(Checkpoint)的保存是一个关键环节。传统方式通常需要将GPU显存中的数据先传输到主机内存,再写入磁盘。然而,当模型规模超过主机内存容量时,这种方法就会遇到瓶颈。
问题本质
Equinox作为基于JAX的深度学习库,其内置的tree_serialise_leaves函数在默认情况下会触发GPU到CPU的数据传输。对于显存远大于内存的硬件配置(如48GB显存的L40S GPU搭配2GB内存),这种传输会导致进程被系统终止。
技术解决方案
CUDA直接I/O方案
针对NVIDIA CUDA平台,可以利用kvikio库实现GPU显存到存储设备的直接数据传输,完全绕过主机内存。kvikio提供了兼容Python文件接口的CUDA文件操作功能。
Equinox集成实现
在Equinox中,可以通过自定义filter_spec参数来改变默认的序列化行为。以下是具体实现方法:
保存检查点示例:
import jax.numpy as jnp
import equinox as eqx
import kvikio
# 创建大型JAX数组(32GB)
model_params = jnp.ones(8000000000, dtype=jnp.float32)
def direct_gpu_serializer(f, x):
if isinstance(x, jax.Array):
f.write(x) # 直接写入GPU数据
else:
eqx.default_serialise_filter_spec(f, x)
with kvikio.CuFile('/path/to/checkpoint.eqx', 'w') as f:
eqx.tree_serialise_leaves(f, model_params,
filter_spec=direct_gpu_serializer)
加载检查点示例:
def direct_gpu_deserializer(f, x):
if isinstance(x, jax.Array):
f.read(x) # 直接读取到GPU
return x
return eqx.default_deserialise_filter_spec(f, x)
# 预分配GPU内存
model_params = jnp.zeros(8000000000, dtype=jnp.float32)
with kvikio.CuFile('/path/to/checkpoint.eqx', 'r') as f:
loaded_params = eqx.tree_deserialise_leaves(f, model_params,
filter_spec=direct_gpu_deserializer)
技术要点解析
-
零拷贝优势:该方法完全避免了GPU-CPU之间的数据传输,不仅节省内存,还能提高I/O效率。
-
预分配机制:在加载时需预先分配GPU内存,kvikio会直接将数据读入已分配的显存空间。
-
兼容性考虑:对于非数组类型的参数,仍使用Equinox默认的序列化方法,保证功能的完整性。
应用场景
这种方法特别适合以下情况:
- 训练超大模型时,模型参数远超主机内存容量
- 使用高显存GPU(如A100、H100、L40S等)的训练环境
- 需要频繁保存检查点的长期训练任务
注意事项
- 该方案目前仅支持NVIDIA CUDA平台
- 需要确保存储设备支持足够高的I/O吞吐量,以避免成为性能瓶颈
- 对于分布式训练场景,需要考虑文件系统的并发访问支持
通过这种直接GPU到磁盘的序列化方法,研究人员可以充分利用现代GPU的大显存优势,突破主机内存限制,更高效地进行大规模模型训练。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896