TorchRL在RoboHive环境中训练智能体的技术实践与问题分析
2025-06-29 18:23:57作者:咎竹峻Karen
概述
在使用TorchRL框架训练PPO智能体于RoboHive的Franka Kitchen环境时,开发者遇到了训练收敛困难的问题。本文将详细分析问题原因、解决方案以及最终取得的训练成果。
环境配置与问题表现
开发者尝试在Franka Kitchen的多个任务环境中训练PPO智能体,初始配置使用了完整的环境状态作为输入,包括:
- 身体位置(body_pos)
- 身体四元数(body_quat)
- 站点位置(site_pos)
- 站点四元数(site_quat)
- 关节位置(qpos)
- 关节速度(qvel)
- 末端执行器位姿(ee_pose)
这种配置导致了两个主要问题:
- 训练无法收敛
- 智能体产生无效动作,导致机械臂异常指向空中,并触发仿真不稳定警告
问题诊断与解决过程
输入特征优化
经过多次实验,开发者发现输入特征的选择对训练效果有显著影响:
- 初始全状态输入:导致训练不稳定和仿真崩溃
- 简化输入特征:仅使用末端执行器位姿(ee_pose)和目标物体位置(obj_goal)作为输入,训练效果有所改善
- 最终方案:结合环境观察和特定任务相关特征
训练稳定性问题
在训练过程中,PPO损失函数中的目标损失项(loss_objective)偶尔会变为NaN值,导致整个网络参数变为NaN,进而破坏仿真。这种现象在多次重复实验中并非每次都出现,表明可能存在:
- 学习率设置问题
- 梯度爆炸
- 不恰当的奖励缩放
- 环境观测值范围异常
环境一致性验证
为确保训练环境与标准环境一致,开发者进行了以下验证:
- 观察值一致性检查:确认TorchRL环境与标准Gym环境的reset_obs值匹配
- 种子设置:确保环境随机性一致
- 初始策略探索行为验证:检查初始策略产生的动作是否合理
最终训练成果
经过多次实验和参数调整,PPO算法在16个Franka Kitchen任务中取得了良好的收敛效果,平均准确率达到87.125%。各任务具体表现如下:
| 任务名称 | 准确率(%) |
|---|---|
| Knob1Off | 66 |
| Knob1On | 90 |
| Knob2Off | 84 |
| Knob2On | 82 |
| Knob3Off | 80 |
| Knob3On | 84 |
| Knob4Off | 70 |
| Knob4On | 94 |
| LightOn | 98 |
| LightOff | 98 |
| MicroClose | 96 |
| MicroOpen | 82 |
| SdoorClose | 92 |
| SdoorOpen | 98 |
| RdoorClose | 98 |
| RdoorOpen | 82 |
技术建议
对于在TorchRL中使用RoboHive环境的开发者,建议:
- 输入特征选择:优先考虑任务相关的关键特征,而非全部环境状态
- 训练稳定性:
- 实现梯度裁剪
- 监控损失函数变化
- 适当调整学习率
- 环境验证:
- 确保观察空间一致
- 验证初始策略行为合理性
- 任务难度评估:某些复杂任务可能需要更精细的奖励设计或课程学习策略
结论
通过系统的问题分析和实验验证,开发者成功解决了TorchRL在RoboHive环境中的训练问题。这一过程展示了强化学习实践中输入特征选择、训练稳定性控制和环境验证的重要性,为类似场景下的算法实现提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355