ASP.NET Extensions项目中AIFunction参数验证问题的分析与解决
在ASP.NET Extensions项目的开发过程中,开发者MikeAlhayek遇到了一个关于AIFunction参数验证的典型问题。这个问题涉及到JSON Schema的严格验证模式,以及如何正确处理AI函数的调用流程。本文将深入分析问题本质,并提供完整的解决方案。
问题现象
开发者尝试创建一个名为ImportOrchardCoreRecipeTool的AIFunction,用于导入OrchardCore的JSON配方。该函数定义了一个必需的"recipe"参数,但在实际调用时遇到了验证错误:
Invalid schema for function 'import_recipe': In context=(), 'required' must be an array that includes every key in `properties`. Extra required key 'recipe' supplied.
根本原因分析
经过技术专家stephentoub的深入调查,发现这个问题实际上由两个关键因素导致:
-
OpenAI服务的严格验证模式:服务端默认启用了严格(strict)验证模式,对JSON Schema有额外的验证要求。
-
Schema定义不完整:原始实现中缺少了
additionalProperties字段,且将recipe参数类型定义为"object"而非更合适的"string"类型。
解决方案
方案一:修正Schema定义
修正后的Schema应该包含以下关键元素:
{
"type": "object",
"properties": {
"recipe": {
"type": "string",
"description": "A JSON object representing an OrchardCore recipe"
}
},
"additionalProperties": false,
"required": ["recipe"]
}
主要修改点:
- 将recipe的类型从"object"改为"string"
- 显式添加了additionalProperties字段
- 保持了required数组中的recipe参数
方案二:禁用严格验证模式
如果暂时需要保持原有Schema结构,可以通过设置AdditionalProperties来禁用严格验证:
public override IReadOnlyDictionary<string, object?> AdditionalProperties { get; } = new Dictionary<string, object?>()
{
["Strict"] = false,
};
函数调用处理
开发者还遇到了函数未被调用的现象,这是因为:
-
AI模型返回的是函数调用请求(function call request),需要开发者手动处理或使用FunctionInvokingChatClient来自动处理。
-
正确的调用流程应该包含对函数调用请求的响应处理,确保函数能够被正确触发。
最佳实践建议
-
Schema设计原则:
- 明确定义所有参数类型
- 包含additionalProperties声明
- 为每个参数提供清晰的description
-
函数调用处理:
- 实现完整的函数调用生命周期处理
- 考虑使用内置的FunctionInvokingChatClient简化流程
- 添加适当的错误处理和日志记录
-
版本兼容性:
- 注意不同版本间的行为差异
- 及时关注官方更新和修复
总结
这个问题展示了在ASP.NET Extensions项目中实现AIFunction时可能遇到的典型挑战。通过理解JSON Schema的验证规则和函数调用机制,开发者可以构建更健壮的AI集成功能。随着项目的不断演进,这类问题有望在框架层面得到更好的默认处理,但掌握这些底层原理对于开发复杂AI应用仍然至关重要。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00