ASP.NET Extensions项目中AIFunction参数验证问题的分析与解决
在ASP.NET Extensions项目的开发过程中,开发者MikeAlhayek遇到了一个关于AIFunction参数验证的典型问题。这个问题涉及到JSON Schema的严格验证模式,以及如何正确处理AI函数的调用流程。本文将深入分析问题本质,并提供完整的解决方案。
问题现象
开发者尝试创建一个名为ImportOrchardCoreRecipeTool的AIFunction,用于导入OrchardCore的JSON配方。该函数定义了一个必需的"recipe"参数,但在实际调用时遇到了验证错误:
Invalid schema for function 'import_recipe': In context=(), 'required' must be an array that includes every key in `properties`. Extra required key 'recipe' supplied.
根本原因分析
经过技术专家stephentoub的深入调查,发现这个问题实际上由两个关键因素导致:
-
OpenAI服务的严格验证模式:服务端默认启用了严格(strict)验证模式,对JSON Schema有额外的验证要求。
-
Schema定义不完整:原始实现中缺少了
additionalProperties字段,且将recipe参数类型定义为"object"而非更合适的"string"类型。
解决方案
方案一:修正Schema定义
修正后的Schema应该包含以下关键元素:
{
"type": "object",
"properties": {
"recipe": {
"type": "string",
"description": "A JSON object representing an OrchardCore recipe"
}
},
"additionalProperties": false,
"required": ["recipe"]
}
主要修改点:
- 将recipe的类型从"object"改为"string"
- 显式添加了additionalProperties字段
- 保持了required数组中的recipe参数
方案二:禁用严格验证模式
如果暂时需要保持原有Schema结构,可以通过设置AdditionalProperties来禁用严格验证:
public override IReadOnlyDictionary<string, object?> AdditionalProperties { get; } = new Dictionary<string, object?>()
{
["Strict"] = false,
};
函数调用处理
开发者还遇到了函数未被调用的现象,这是因为:
-
AI模型返回的是函数调用请求(function call request),需要开发者手动处理或使用FunctionInvokingChatClient来自动处理。
-
正确的调用流程应该包含对函数调用请求的响应处理,确保函数能够被正确触发。
最佳实践建议
-
Schema设计原则:
- 明确定义所有参数类型
- 包含additionalProperties声明
- 为每个参数提供清晰的description
-
函数调用处理:
- 实现完整的函数调用生命周期处理
- 考虑使用内置的FunctionInvokingChatClient简化流程
- 添加适当的错误处理和日志记录
-
版本兼容性:
- 注意不同版本间的行为差异
- 及时关注官方更新和修复
总结
这个问题展示了在ASP.NET Extensions项目中实现AIFunction时可能遇到的典型挑战。通过理解JSON Schema的验证规则和函数调用机制,开发者可以构建更健壮的AI集成功能。随着项目的不断演进,这类问题有望在框架层面得到更好的默认处理,但掌握这些底层原理对于开发复杂AI应用仍然至关重要。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00