Presidio项目中的DICOM图像脱敏引擎自定义分析器配置
2025-06-13 08:16:40作者:蔡怀权
在医疗影像数据处理领域,DICOM格式的图像脱敏是一个重要需求。微软开源的Presidio项目提供了强大的隐私数据识别和脱敏功能,其中DicomImageRedactorEngine专门用于处理DICOM图像中的敏感信息。
默认分析器与自定义需求
Presidio的DicomImageRedactorEngine默认使用spaCy模型进行命名实体识别(NER)。然而,在实际应用中,开发者可能需要使用其他NLP模型,如Flair或Transformers模型,来满足特定场景下的识别需求。
自定义分析器配置方法
通过AnalyzerEngine的灵活配置,我们可以轻松替换默认的spaCy模型。以下是完整的配置示例:
from presidio_analyzer import AnalyzerEngine
from presidio_analyzer.nlp_engine import TransformersNlpEngine, NerModelConfiguration
from presidio_image_redactor import ImageAnalyzerEngine, DicomImagePiiVerifyEngine
# 定义模型配置
model_config = [{
"lang_code": "en",
"model_name": {
"spacy": "en_core_web_sm", # 基础spaCy模型用于分词等基础处理
"transformers": "obi/deid_roberta_i2b2" # 自定义Transformers模型
}
}]
# 建立模型标签与Presidio实体类型的映射关系
model_to_presidio_entity_mapping = {
"PER": "PERSON",
"PERSON": "PERSON",
"LOC": "LOCATION",
"GPE": "LOCATION",
"ORG": "ORGANIZATION",
"AGE": "AGE",
"ID": "ID",
"EMAIL": "EMAIL",
"DATE": "DATE_TIME",
"PHONE": "PHONE_NUMBER"
}
# 配置NER模型参数
ner_model_configuration = NerModelConfiguration(
labels_to_ignore=["O"], # 忽略"O"标签(非实体)
model_to_presidio_entity_mapping=model_to_presidio_entity_mapping
)
# 初始化NLP引擎
nlp_engine = TransformersNlpEngine(
models=model_config,
ner_model_configuration=ner_model_configuration
)
# 创建自定义分析器引擎
analyzer_engine = AnalyzerEngine(nlp_engine=nlp_engine)
# 构建图像分析器和DICOM验证引擎
image_analyzer = ImageAnalyzerEngine(analyzer_engine=analyzer_engine)
dicom_engine = DicomImagePiiVerifyEngine(image_analyzer_engine=image_analyzer)
技术实现要点
-
模型配置:支持同时配置spaCy模型(用于基础NLP处理)和Transformers模型(用于实体识别)
-
标签映射:不同NER模型的输出标签可能与Presidio定义的实体类型不同,需要通过映射表进行转换
-
忽略规则:可以指定需要忽略的标签,如常见的"O"标签表示非实体
-
多语言支持:通过lang_code参数可以支持多种语言的模型
应用场景
这种灵活的配置方式特别适用于:
- 医疗领域专用术语识别
- 特定语言的敏感信息检测
- 高精度实体识别需求场景
- 领域自适应(domain adaptation)需求
通过这种配置方式,开发者可以充分利用最新的NLP模型技术,同时保持与Presidio框架的无缝集成,为DICOM图像脱敏提供更强大的支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C087
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
87
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
433
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19