Presidio项目中的DICOM图像脱敏引擎自定义分析器配置
2025-06-13 08:16:40作者:蔡怀权
在医疗影像数据处理领域,DICOM格式的图像脱敏是一个重要需求。微软开源的Presidio项目提供了强大的隐私数据识别和脱敏功能,其中DicomImageRedactorEngine专门用于处理DICOM图像中的敏感信息。
默认分析器与自定义需求
Presidio的DicomImageRedactorEngine默认使用spaCy模型进行命名实体识别(NER)。然而,在实际应用中,开发者可能需要使用其他NLP模型,如Flair或Transformers模型,来满足特定场景下的识别需求。
自定义分析器配置方法
通过AnalyzerEngine的灵活配置,我们可以轻松替换默认的spaCy模型。以下是完整的配置示例:
from presidio_analyzer import AnalyzerEngine
from presidio_analyzer.nlp_engine import TransformersNlpEngine, NerModelConfiguration
from presidio_image_redactor import ImageAnalyzerEngine, DicomImagePiiVerifyEngine
# 定义模型配置
model_config = [{
"lang_code": "en",
"model_name": {
"spacy": "en_core_web_sm", # 基础spaCy模型用于分词等基础处理
"transformers": "obi/deid_roberta_i2b2" # 自定义Transformers模型
}
}]
# 建立模型标签与Presidio实体类型的映射关系
model_to_presidio_entity_mapping = {
"PER": "PERSON",
"PERSON": "PERSON",
"LOC": "LOCATION",
"GPE": "LOCATION",
"ORG": "ORGANIZATION",
"AGE": "AGE",
"ID": "ID",
"EMAIL": "EMAIL",
"DATE": "DATE_TIME",
"PHONE": "PHONE_NUMBER"
}
# 配置NER模型参数
ner_model_configuration = NerModelConfiguration(
labels_to_ignore=["O"], # 忽略"O"标签(非实体)
model_to_presidio_entity_mapping=model_to_presidio_entity_mapping
)
# 初始化NLP引擎
nlp_engine = TransformersNlpEngine(
models=model_config,
ner_model_configuration=ner_model_configuration
)
# 创建自定义分析器引擎
analyzer_engine = AnalyzerEngine(nlp_engine=nlp_engine)
# 构建图像分析器和DICOM验证引擎
image_analyzer = ImageAnalyzerEngine(analyzer_engine=analyzer_engine)
dicom_engine = DicomImagePiiVerifyEngine(image_analyzer_engine=image_analyzer)
技术实现要点
-
模型配置:支持同时配置spaCy模型(用于基础NLP处理)和Transformers模型(用于实体识别)
-
标签映射:不同NER模型的输出标签可能与Presidio定义的实体类型不同,需要通过映射表进行转换
-
忽略规则:可以指定需要忽略的标签,如常见的"O"标签表示非实体
-
多语言支持:通过lang_code参数可以支持多种语言的模型
应用场景
这种灵活的配置方式特别适用于:
- 医疗领域专用术语识别
- 特定语言的敏感信息检测
- 高精度实体识别需求场景
- 领域自适应(domain adaptation)需求
通过这种配置方式,开发者可以充分利用最新的NLP模型技术,同时保持与Presidio框架的无缝集成,为DICOM图像脱敏提供更强大的支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248