Presidio项目中的DICOM图像脱敏引擎自定义分析器配置
2025-06-13 08:16:40作者:蔡怀权
在医疗影像数据处理领域,DICOM格式的图像脱敏是一个重要需求。微软开源的Presidio项目提供了强大的隐私数据识别和脱敏功能,其中DicomImageRedactorEngine专门用于处理DICOM图像中的敏感信息。
默认分析器与自定义需求
Presidio的DicomImageRedactorEngine默认使用spaCy模型进行命名实体识别(NER)。然而,在实际应用中,开发者可能需要使用其他NLP模型,如Flair或Transformers模型,来满足特定场景下的识别需求。
自定义分析器配置方法
通过AnalyzerEngine的灵活配置,我们可以轻松替换默认的spaCy模型。以下是完整的配置示例:
from presidio_analyzer import AnalyzerEngine
from presidio_analyzer.nlp_engine import TransformersNlpEngine, NerModelConfiguration
from presidio_image_redactor import ImageAnalyzerEngine, DicomImagePiiVerifyEngine
# 定义模型配置
model_config = [{
"lang_code": "en",
"model_name": {
"spacy": "en_core_web_sm", # 基础spaCy模型用于分词等基础处理
"transformers": "obi/deid_roberta_i2b2" # 自定义Transformers模型
}
}]
# 建立模型标签与Presidio实体类型的映射关系
model_to_presidio_entity_mapping = {
"PER": "PERSON",
"PERSON": "PERSON",
"LOC": "LOCATION",
"GPE": "LOCATION",
"ORG": "ORGANIZATION",
"AGE": "AGE",
"ID": "ID",
"EMAIL": "EMAIL",
"DATE": "DATE_TIME",
"PHONE": "PHONE_NUMBER"
}
# 配置NER模型参数
ner_model_configuration = NerModelConfiguration(
labels_to_ignore=["O"], # 忽略"O"标签(非实体)
model_to_presidio_entity_mapping=model_to_presidio_entity_mapping
)
# 初始化NLP引擎
nlp_engine = TransformersNlpEngine(
models=model_config,
ner_model_configuration=ner_model_configuration
)
# 创建自定义分析器引擎
analyzer_engine = AnalyzerEngine(nlp_engine=nlp_engine)
# 构建图像分析器和DICOM验证引擎
image_analyzer = ImageAnalyzerEngine(analyzer_engine=analyzer_engine)
dicom_engine = DicomImagePiiVerifyEngine(image_analyzer_engine=image_analyzer)
技术实现要点
-
模型配置:支持同时配置spaCy模型(用于基础NLP处理)和Transformers模型(用于实体识别)
-
标签映射:不同NER模型的输出标签可能与Presidio定义的实体类型不同,需要通过映射表进行转换
-
忽略规则:可以指定需要忽略的标签,如常见的"O"标签表示非实体
-
多语言支持:通过lang_code参数可以支持多种语言的模型
应用场景
这种灵活的配置方式特别适用于:
- 医疗领域专用术语识别
- 特定语言的敏感信息检测
- 高精度实体识别需求场景
- 领域自适应(domain adaptation)需求
通过这种配置方式,开发者可以充分利用最新的NLP模型技术,同时保持与Presidio框架的无缝集成,为DICOM图像脱敏提供更强大的支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136