Apollo Kotlin 客户端缓存机制深度解析与优化实践
缓存机制架构分析
Apollo Kotlin 作为一款优秀的 GraphQL 客户端框架,其缓存系统采用了分层设计理念。在 iOS 平台上运行时,实际上存在两个独立的缓存层级:
-
规范化缓存(Normalized Cache):这是 Apollo 的核心缓存机制,负责存储经过规范化处理的 GraphQL 数据,能够智能地合并相同实体,避免数据冗余。
-
HTTP 缓存层:由 iOS 系统的 NSURLCache 提供支持,属于底层网络缓存,独立于 Apollo 的规范化缓存系统。
问题现象与根源
开发者在使用过程中发现两个关键问题:
-
即使为 mutation 操作设置了
doNotStore(true)标志,请求数据仍然出现在系统缓存中。 -
调用
apolloClient.apolloStore.clearAll()方法后,缓存并未被完全清除。
经过深入分析,这些问题源于对缓存层级的误解。doNotStore() 和 clearAll() 方法仅作用于 Apollo 的规范化缓存,而不会影响 iOS 系统级别的 HTTP 缓存。
HTTP 缓存机制详解
iOS 平台的 NSURLCache 默认会缓存 HTTP 响应,即使请求策略设置为 NSURLRequestReloadIgnoringCacheData。这一策略仅控制是否从缓存读取数据,而不影响是否写入缓存。这种设计可能导致以下情况:
- 敏感数据可能被意外缓存
- 缓存清除操作不彻底
- 存储空间被不必要的请求占用
解决方案与最佳实践
经过验证,最有效的解决方案是使用临时会话配置:
val client = ApolloClient.Builder()
.httpEngine(
DefaultHttpEngine(
nsUrlSessionConfiguration = NSURLSessionConfiguration.ephemeralSessionConfiguration()
)
)
.build()
这种配置的优势在于:
- 完全禁用磁盘缓存,确保敏感数据不会持久化
- 内存缓存仍然可用,保持良好性能
- 与 Apollo 的规范化缓存完美配合
- 简化缓存管理,避免多级缓存带来的复杂性
架构设计启示
这一问题的解决过程给我们带来几点重要启示:
-
分层设计:理解每层缓存的职责边界至关重要,规范化缓存与 HTTP 缓存服务于不同目的。
-
默认安全性:框架默认配置应优先考虑数据安全性,避免意外缓存敏感信息。
-
明确文档:需要清晰区分不同缓存层的行为特征,帮助开发者正确使用。
Apollo Kotlin 团队已将此优化方案合并到主分支,未来版本将默认采用更安全的缓存策略,为开发者提供更好的使用体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00