Supabase-py异步客户端性能优化实践
2025-07-05 05:09:07作者:昌雅子Ethen
问题背景
在使用Supabase-py异步客户端时,开发者发现并发请求的性能表现异常。当发起3个并发请求时耗时0.73秒,但增加到50个并发请求时却需要8秒,这与预期的异步并行处理效果不符。
问题分析
通过测试代码分析,主要存在以下两个关键问题:
-
客户端初始化方式不当:原始代码中客户端初始化时未指定schema,导致每次请求都需要额外的schema处理开销。
-
异步处理机制理解偏差:虽然使用了async/await语法,但实际执行时并未真正实现并行处理,而是接近串行执行。
解决方案
经过深入排查,发现正确的客户端初始化方式应为:
x_SUPABASE_CLIENT: AsyncClient = None
async def get_client() -> AsyncClient:
global x_SUPABASE_CLIENT
if x_SUPABASE_CLIENT:
return x_SUPABASE_CLIENT
x_SUPABASE_CLIENT = (await create_async_client(SUPABASE_URL, SUPABASE_KEY)).schema(DB_SCHEMA)
return x_SUPABASE_CLIENT
关键改进点:
- 在客户端初始化时直接指定schema
- 确保客户端单例模式正确实现
- 减少重复初始化和schema处理开销
性能对比
优化前后性能数据对比:
| 指标 | 优化前 | 优化后 |
|---|---|---|
| 50请求总耗时 | 8秒 | 0.17秒 |
| 单请求平均耗时 | 0.2秒 | 0.0034秒 |
| 成功率 | 100% | 100% |
技术要点
-
Schema预加载:在客户端初始化阶段预先加载schema可以显著减少后续请求的处理时间。
-
单例模式实现:确保AsyncClient只被初始化一次,避免重复创建连接的开销。
-
异步编程最佳实践:正确使用async/await语法,配合asyncio.gather实现真正的并行处理。
经验总结
-
在使用Supabase异步客户端时,务必在初始化阶段完成所有必要的配置。
-
性能测试是验证异步处理效果的重要手段,建议在开发阶段进行多场景测试。
-
对于数据库操作,预加载schema等元数据可以显著提升性能。
-
理解底层实现机制比单纯使用API更重要,这有助于快速定位和解决性能问题。
通过这次优化实践,我们不仅解决了具体的性能问题,更重要的是掌握了Supabase-py异步客户端的正确使用方式,为后续开发高性能应用奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26