DeepMD-kit中FP32模型预测NaN能量的技术分析与解决方案
2025-07-10 21:55:53作者:卓艾滢Kingsley
问题背景
在分子动力学模拟领域,DeepMD-kit作为一款基于深度学习的势函数工具,被广泛应用于材料科学和化学模拟。近期有用户报告在使用DeepMD-kit 2.2.7版本时遇到了一个数值稳定性问题:当使用单精度浮点数(FP32)训练模型时,模型预测的能量值会出现NaN(非数值)结果,而切换为双精度浮点数(FP64)后问题消失。
技术分析
问题表现
用户提供了两种不同精度配置的训练输入文件:
- FP32配置:在描述符和拟合网络中都明确设置了
"precision": "float32" - FP64配置:不指定精度参数,使用默认双精度
训练完成后,使用相同的预测脚本对结构进行能量计算时,FP32模型输出全部为NaN,而FP64模型则能给出合理的能量值。
根本原因
根据DeepMD-kit开发团队的反馈,这个问题与2.2.7版本中已知的数值稳定性问题有关。在单精度浮点运算下,某些数学运算可能因为数值范围限制而出现溢出或下溢,导致最终结果为NaN。
影响因素
- 网络结构复杂性:用户使用了相对较深的网络结构(3层240神经元的拟合网络),增加了数值不稳定的风险
- 激活函数选择:使用tanh激活函数,在某些情况下可能导致梯度消失
- 训练数据范围:如果训练数据本身的数值范围较大,单精度浮点数可能无法精确表示
解决方案
临时解决方案
- 使用双精度浮点数:如用户所做,移除precision参数或显式设置为float64
- 简化网络结构:减少神经元数量或网络层数,降低数值计算复杂度
长期解决方案
升级到DeepMD-kit 3.0.0b4或更高版本。根据用户反馈,在新版本中此问题已得到修复。新版本可能包含以下改进:
- 更好的数值稳定性处理
- 改进的激活函数实现
- 优化的梯度计算方式
最佳实践建议
- 版本选择:建议使用最新稳定版本的DeepMD-kit
- 精度选择:除非有特殊需求,否则推荐使用FP64以获得更好的数值稳定性
- 网络设计:在保证精度的前提下,尽量使用简单的网络结构
- 数据预处理:确保训练数据经过适当的归一化处理
结论
数值稳定性是深度学习势函数开发中的关键问题。DeepMD-kit团队已经在新版本中修复了FP32下的NaN问题。对于需要使用单精度浮点数来节省内存或提高计算速度的用户,建议升级到3.0.0及以上版本,并在训练前仔细检查网络结构和数据范围,以确保计算的稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136