Axolotl v0.8.0发布:支持序列并行与多模态模型训练
2025-06-06 17:31:24作者:魏献源Searcher
Axolotl是一个专注于大语言模型(LLM)微调的开源工具库,它提供了从数据准备到模型训练的全流程解决方案。最新发布的v0.8.0版本带来了多项重要更新,特别是在并行训练和多模态支持方面有显著突破。
序列并行支持通过ring-flash-attn实现
v0.8.0版本引入了序列并行(Sequence Parallelism)技术,这是通过ring-flash-attn实现的创新功能。序列并行能够将长序列分布在多个GPU上,有效降低了单个设备的内存需求,同时保持了接近线性的上下文长度扩展能力。
这项技术与Axolotl已有的FSDP(完全分片数据并行)和DeepSpeed支持形成了互补,为用户提供了更灵活的大模型训练选择。在实际应用中,序列并行特别适合处理超长上下文场景,如处理长文档或复杂对话历史。
Gemma-3模型全面支持
Google最新发布的Gemma-3模型在此版本中获得了完整支持。Axolotl团队针对Gemma-3的特性进行了多项优化:
- 实现了Cut Cross Entropy技术,提升了训练效率
- 集成了Liger内核,优化了计算性能
- 增加了多模态支持能力
- 修复了梯度累积时的损失计算问题
这些改进使得在Axolotl上微调Gemma-3模型更加高效稳定。
多模态模型Beta支持
v0.8.0版本扩展了对多模态模型的支持,包括:
- Mllama
- Pixtral
- Llava-1.5
- Mistral-Small-3.1
- Gemma-3
- Qwen2-VL
- Qwen2.5-VL
这些模型能够同时处理文本和图像输入,为构建更智能的多模态应用提供了基础。
其他重要特性
-
优化器改进:
- 单GPU和DDP模式下支持Muon优化器
- 使用默认的torch fused AdamW优化器替代已弃用的adamw_hf
-
训练技术增强:
- 新增REX学习率调度器
- 支持tokenizer覆盖,允许使用保留令牌进行自定义微调
- 为课程学习(Curriculum learning)添加了顺序打包支持
-
GRPO训练加速:
- 通过分布式vLLM加速GRPO训练过程
- 新增
axolotl vllm-serve
命令来启动多GPU服务实例
-
性能优化:
- 更新了多个模型的Cut Cross Entropy补丁
- 默认限制数据集处理进程不超过32个
- 多项内存管理和分布式训练优化
技术前瞻与兼容性说明
v0.8.x将是最后一个正式支持torch<=2.4.1的版本系列。随着PyTorch 2.7的发布,Axolotl计划仅支持最新的两个稳定PyTorch版本。团队正在积极开发FSDP2支持,预计将在v0.8.1版本中发布,届时将解决检查点保存等问题。
总结
Axolotl v0.8.0通过序列并行、多模态支持和多项优化技术,进一步巩固了其作为大模型微调首选工具的地位。这些更新不仅提升了训练效率,还扩展了模型支持范围,为研究人员和开发者提供了更强大的工具来探索AI前沿。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8