Axolotl v0.8.0发布:支持序列并行与多模态模型训练
2025-06-06 07:30:47作者:魏献源Searcher
Axolotl是一个专注于大语言模型(LLM)微调的开源工具库,它提供了从数据准备到模型训练的全流程解决方案。最新发布的v0.8.0版本带来了多项重要更新,特别是在并行训练和多模态支持方面有显著突破。
序列并行支持通过ring-flash-attn实现
v0.8.0版本引入了序列并行(Sequence Parallelism)技术,这是通过ring-flash-attn实现的创新功能。序列并行能够将长序列分布在多个GPU上,有效降低了单个设备的内存需求,同时保持了接近线性的上下文长度扩展能力。
这项技术与Axolotl已有的FSDP(完全分片数据并行)和DeepSpeed支持形成了互补,为用户提供了更灵活的大模型训练选择。在实际应用中,序列并行特别适合处理超长上下文场景,如处理长文档或复杂对话历史。
Gemma-3模型全面支持
Google最新发布的Gemma-3模型在此版本中获得了完整支持。Axolotl团队针对Gemma-3的特性进行了多项优化:
- 实现了Cut Cross Entropy技术,提升了训练效率
- 集成了Liger内核,优化了计算性能
- 增加了多模态支持能力
- 修复了梯度累积时的损失计算问题
这些改进使得在Axolotl上微调Gemma-3模型更加高效稳定。
多模态模型Beta支持
v0.8.0版本扩展了对多模态模型的支持,包括:
- Mllama
- Pixtral
- Llava-1.5
- Mistral-Small-3.1
- Gemma-3
- Qwen2-VL
- Qwen2.5-VL
这些模型能够同时处理文本和图像输入,为构建更智能的多模态应用提供了基础。
其他重要特性
-
优化器改进:
- 单GPU和DDP模式下支持Muon优化器
- 使用默认的torch fused AdamW优化器替代已弃用的adamw_hf
-
训练技术增强:
- 新增REX学习率调度器
- 支持tokenizer覆盖,允许使用保留令牌进行自定义微调
- 为课程学习(Curriculum learning)添加了顺序打包支持
-
GRPO训练加速:
- 通过分布式vLLM加速GRPO训练过程
- 新增
axolotl vllm-serve命令来启动多GPU服务实例
-
性能优化:
- 更新了多个模型的Cut Cross Entropy补丁
- 默认限制数据集处理进程不超过32个
- 多项内存管理和分布式训练优化
技术前瞻与兼容性说明
v0.8.x将是最后一个正式支持torch<=2.4.1的版本系列。随着PyTorch 2.7的发布,Axolotl计划仅支持最新的两个稳定PyTorch版本。团队正在积极开发FSDP2支持,预计将在v0.8.1版本中发布,届时将解决检查点保存等问题。
总结
Axolotl v0.8.0通过序列并行、多模态支持和多项优化技术,进一步巩固了其作为大模型微调首选工具的地位。这些更新不仅提升了训练效率,还扩展了模型支持范围,为研究人员和开发者提供了更强大的工具来探索AI前沿。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19