FishNet 4.5.7版本更新详解:网络同步与预测的全面优化
FishNet是一个面向Unity游戏开发者的高性能网络框架,专注于为多人游戏提供稳定、高效的网络同步解决方案。本次4.5.7版本的更新带来了多项重要改进,特别是在网络预测、场景管理和异常处理方面进行了显著优化。
核心改进与修复
时间管理与网络传输优化
本次更新修复了TimeManager.TimePassed中负时间比较的问题,这是网络同步中时间计算的关键组件。同时新增了Transport.GetPacketLoss和Tugboat.GetPacketLoss方法,为开发者提供了网络丢包率的监测能力,这对于评估网络质量和优化同步策略非常有价值。
在网络传输层,改进了可靠信道(Channel.Reliable)下的协调数据发送机制,现在无论最近是否运行过复制操作,都会强制发送协调数据,这提高了网络同步的可靠性。
场景管理与对象处理
SceneManager.MoveClientHostObjects方法更名为MoveClientObjects,并且现在也适用于ClientOnly场景。这一改进简化了场景间对象迁移的逻辑,使开发者能够更灵活地管理网络对象在不同场景中的存在状态。
针对客户端主机(clientHost)模式下的对象快速生成和场景切换问题,修复了可能导致的NullReferenceException异常,同时移除了不必要的日志记录,提升了运行效率。
网络预测与物理模拟
在物理模拟方面,修复了RigidbodyPauser在解除暂停时可能错误恢复为运动学状态的问题,这对于离线物理模拟(OfflineRigidbody)尤为重要。同时新增了两个重要的演示场景:
- 角色控制器预测演示:展示了包括冲刺、跳跃、耐力系统、移动平台和父子关系等复杂场景下的网络预测实现
- 刚体预测演示:包含网络触发器拾取、速度提升和多刚体预测等高级功能
这些演示为开发者提供了宝贵的参考实现,展示了FishNet在复杂物理交互场景下的强大能力。
关键问题修复
本次更新解决了多个可能导致崩溃或异常的关键问题:
- 修复了嵌套NetworkObject在OnDestroy时可能出现的NullReferenceException
- 解决了IL2CPP构建中泛型类RPC可能导致的崩溃问题(注意:完整解决方案需要Unity 2022或更高版本)
- 修正了观察者构建中OnServerDespawn未被调用的问题
- 修复了四元数减法扩展中的数学计算错误
- 解决了读取空列表时可能出现的无效读取大小错误
性能与稳定性提升
在性能优化方面,开发模式下客户端断开连接时的处理效率得到了提升。同时修复了多个可能导致NullReferenceException的场景,包括:
- ChildTransformTickSmoother在退出游戏/应用时的无害异常
- 协调和复制读取器中NetworkManager引用为空的问题
- 客户端主机模式下NetworkObserver在OnDestroy时取消初始化的问题
这些改进显著提高了框架在各种边缘情况下的稳定性。
总结
FishNet 4.5.7版本通过一系列精细的改进和修复,进一步巩固了其作为Unity高性能网络解决方案的地位。特别是新增的预测演示场景和网络质量监测功能,为开发者构建复杂的多人游戏体验提供了更强大的工具支持。对于正在使用或考虑使用FishNet的开发者来说,这次更新值得重点关注和升级。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00