Swagger-UI与Spring Security集成问题解决方案
问题背景
在Spring Boot 3和Spring Security 6集成的项目中,开发者经常遇到无法访问Swagger-UI的问题。具体表现为访问/swagger-ui.html路径时返回403未授权错误,即使已经在Spring Security配置中明确允许该路径。
问题分析
这个问题通常由以下几个原因导致:
-
路径匹配不完整:Swagger-UI实际上依赖多个路径资源,仅开放
/swagger-ui.html是不够的 -
Spring Security 6的变化:新版本中安全配置方式有所改变,
requestMatchers的用法需要特别注意 -
静态资源处理:Swagger-UI需要加载CSS、JS等静态资源,这些也需要被允许访问
解决方案
方案一:使用WebSecurityCustomizer
最推荐的解决方案是使用WebSecurityCustomizer来完全忽略Swagger相关路径的安全检查:
@Bean
public WebSecurityCustomizer webSecurityCustomizer() {
return web -> web.ignoring().requestMatchers(
"/swagger-ui/**",
"/v3/api-docs/**",
"/swagger-ui.html"
);
}
这种方法简单有效,能够确保所有Swagger相关的资源都不受安全限制。
方案二:完整配置HttpSecurity
如果希望保持安全配置的统一性,可以在SecurityFilterChain中完整配置所有Swagger需要的路径:
@Bean
public SecurityFilterChain securityFilterChain(HttpSecurity http) throws Exception {
http
.csrf(AbstractHttpConfigurer::disable)
.authorizeHttpRequests(auth -> auth
.requestMatchers(
"/swagger-ui/**",
"/v3/api-docs/**",
"/swagger-ui.html",
"/swagger-resources/**",
"/webjars/**"
).permitAll()
// 其他安全配置...
);
return http.build();
}
方案三:路径匹配优化
对于Spring Security 6,路径匹配需要更加精确:
.requestMatchers(
"/swagger-ui.html",
"/swagger-ui/**",
"/v3/api-docs/**",
"/swagger-resources",
"/swagger-resources/**",
"/configuration/ui",
"/configuration/security",
"/webjars/**"
).permitAll()
最佳实践建议
-
开发环境与生产环境分离:建议只在开发环境中启用Swagger,生产环境应禁用
-
版本兼容性检查:确保使用的Springfox或SpringDoc版本与Spring Boot 3兼容
-
测试所有相关路径:不仅要测试
/swagger-ui.html,还要确保所有依赖资源都能正常加载 -
考虑使用SpringDoc:对于新项目,建议使用SpringDoc OpenAPI而不是传统的Springfox,因为它对Spring Boot 3有更好的支持
通过以上解决方案,开发者应该能够顺利解决Swagger-UI在Spring Security保护下的访问问题,同时保持应用程序的安全性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00