AWS Deep Learning Containers发布PyTorch 2.6.0 ARM64 CPU推理镜像
AWS Deep Learning Containers(DLC)项目是亚马逊云科技提供的一套预配置的深度学习容器镜像,旨在简化机器学习工作负载的部署过程。这些容器镜像包含了经过优化的深度学习框架、依赖库和工具,能够帮助开发者快速在AWS云平台上构建和运行机器学习应用。
近日,AWS DLC项目发布了针对ARM64架构的PyTorch 2.6.0 CPU推理镜像。这个版本基于Ubuntu 22.04操作系统,预装了Python 3.12环境,专为在Amazon SageMaker服务上运行推理工作负载而优化。
镜像技术细节
该镜像的核心组件包括PyTorch 2.6.0 CPU版本,以及配套的torchvision 0.21.0和torchaudio 2.6.0库。这些组件都针对ARM64架构进行了编译优化,能够在AWS Graviton处理器上发挥最佳性能。
镜像中还包含了完整的机器学习工具链,如NumPy 2.2.3、Pandas 2.2.3、Scikit-learn 1.6.1等数据处理库,以及OpenCV 4.11.0用于计算机视觉任务。对于模型服务,镜像预装了TorchServe 0.12.0和Torch Model Archiver工具,方便用户部署和管理PyTorch模型。
系统级优化
在系统层面,镜像基于Ubuntu 22.04 LTS构建,包含了GCC 11工具链和相应的标准库。这些系统组件都针对ARM64架构进行了优化,确保了底层计算的效率。
值得注意的是,镜像中还包含了完整的开发环境工具,如Emacs编辑器,这为需要在容器内进行开发调试的用户提供了便利。同时,AWS CLI工具也预装在镜像中,方便与AWS服务进行交互。
使用场景
这个ARM64架构的PyTorch推理镜像特别适合以下场景:
- 成本敏感的推理工作负载:ARM架构处理器通常能提供更好的性价比
- 边缘计算场景:ARM架构在边缘设备上更为常见
- 需要与现有ARM基础设施集成的场景
用户可以直接在Amazon SageMaker服务中使用这个镜像,也可以在其他支持容器化工作负载的AWS服务上部署。
版本兼容性
这个镜像属于PyTorch 2.6.x系列,保持了与PyTorch生态系统的兼容性。Python 3.12的支持意味着用户可以享受到最新Python版本的语言特性和性能改进。
AWS Deep Learning Containers项目持续为机器学习开发者提供高质量的预构建镜像,这个PyTorch ARM64 CPU推理镜像的发布进一步丰富了AWS上的机器学习基础设施选择,特别是在ARM架构日益普及的背景下,为用户提供了更多部署选项。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00