首页
/ AWS Deep Learning Containers发布PyTorch 2.6.0 ARM64 CPU推理镜像

AWS Deep Learning Containers发布PyTorch 2.6.0 ARM64 CPU推理镜像

2025-07-07 17:12:34作者:咎岭娴Homer

AWS Deep Learning Containers(DLC)项目是亚马逊云科技提供的一套预配置的深度学习容器镜像,旨在简化机器学习工作负载的部署过程。这些容器镜像包含了经过优化的深度学习框架、依赖库和工具,能够帮助开发者快速在AWS云平台上构建和运行机器学习应用。

近日,AWS DLC项目发布了针对ARM64架构的PyTorch 2.6.0 CPU推理镜像。这个版本基于Ubuntu 22.04操作系统,预装了Python 3.12环境,专为在Amazon SageMaker服务上运行推理工作负载而优化。

镜像技术细节

该镜像的核心组件包括PyTorch 2.6.0 CPU版本,以及配套的torchvision 0.21.0和torchaudio 2.6.0库。这些组件都针对ARM64架构进行了编译优化,能够在AWS Graviton处理器上发挥最佳性能。

镜像中还包含了完整的机器学习工具链,如NumPy 2.2.3、Pandas 2.2.3、Scikit-learn 1.6.1等数据处理库,以及OpenCV 4.11.0用于计算机视觉任务。对于模型服务,镜像预装了TorchServe 0.12.0和Torch Model Archiver工具,方便用户部署和管理PyTorch模型。

系统级优化

在系统层面,镜像基于Ubuntu 22.04 LTS构建,包含了GCC 11工具链和相应的标准库。这些系统组件都针对ARM64架构进行了优化,确保了底层计算的效率。

值得注意的是,镜像中还包含了完整的开发环境工具,如Emacs编辑器,这为需要在容器内进行开发调试的用户提供了便利。同时,AWS CLI工具也预装在镜像中,方便与AWS服务进行交互。

使用场景

这个ARM64架构的PyTorch推理镜像特别适合以下场景:

  1. 成本敏感的推理工作负载:ARM架构处理器通常能提供更好的性价比
  2. 边缘计算场景:ARM架构在边缘设备上更为常见
  3. 需要与现有ARM基础设施集成的场景

用户可以直接在Amazon SageMaker服务中使用这个镜像,也可以在其他支持容器化工作负载的AWS服务上部署。

版本兼容性

这个镜像属于PyTorch 2.6.x系列,保持了与PyTorch生态系统的兼容性。Python 3.12的支持意味着用户可以享受到最新Python版本的语言特性和性能改进。

AWS Deep Learning Containers项目持续为机器学习开发者提供高质量的预构建镜像,这个PyTorch ARM64 CPU推理镜像的发布进一步丰富了AWS上的机器学习基础设施选择,特别是在ARM架构日益普及的背景下,为用户提供了更多部署选项。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8