Conventional Changelog 项目中 Yarn 2+ 的依赖加载问题解析
问题背景
在使用 Conventional Changelog 生态系统的工具链时,特别是配合 Yarn 2 及以上版本使用时,开发者可能会遇到预设加载失败的问题。这个问题主要出现在使用 conventional-changelog-preset-loader 模块时,表现为无法加载 conventionalcommits 或 angular 等预设。
问题根源
问题的核心在于 conventional-changelog-preset-loader 将 conventional-changelog-conventionalcommits 放在了 devDependencies 中。在传统的 Node.js 模块解析机制下,这通常不会造成问题,因为 npm 和 Yarn 1.x 会扁平化依赖树。然而,Yarn 2 及以上版本采用了更严格的 PnP(Plug'n'Play)机制,这种机制不会自动提升依赖,导致运行时无法找到这些预设模块。
技术细节
Yarn 的 PnP 机制通过 .pnp.cjs 文件精确控制模块解析,避免了传统 node_modules 的冗余和不确定性。这种机制下,只有明确声明的依赖才能被访问,隐式依赖(即未在 package.json 中声明的依赖)将无法被解析。
在 Conventional Changelog 的场景中,conventional-changelog-preset-loader 动态加载预设(如 conventionalcommits 或 angular),但这些预设并未作为其正式依赖声明,导致了加载失败。
解决方案
开发者可以采用以下几种解决方案:
-
使用 Yarn 的 packageExtensions
在项目根目录的.yarnrc.yml中添加以下配置:packageExtensions: "conventional-changelog-preset-loader@^4.1.0": dependencies: conventional-changelog-conventionalcommits: ^7.0.2这种方法明确告诉 Yarn 需要为指定版本的 loader 添加额外依赖。
-
显式安装预设包
在项目中显式安装所需的预设包:yarn add conventional-changelog-conventionalcommits或者对于 angular 预设:
yarn add conventional-changelog-angular -
回退到 node_modules 链接器
对于暂时无法解决的问题,可以临时切换回传统的 node_modules 模式:nodeLinker: node-modules
长期建议
从项目维护角度,建议将预设包声明为可选 peerDependencies,这样既保持了灵活性,又解决了依赖解析问题。peerDependenciesMeta 可以标记这些依赖为可选,让用户根据需要选择安装特定预设。
总结
这个问题反映了现代包管理器演进过程中与传统 Node.js 模块解析机制的兼容性挑战。Yarn PnP 通过严格依赖控制提高了可靠性和性能,但也要求开发者更加精确地声明依赖关系。理解这一机制有助于开发者更好地处理类似问题,构建更健壮的前端工具链。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00