Conventional Changelog 项目中 Yarn 2+ 的依赖加载问题解析
问题背景
在使用 Conventional Changelog 生态系统的工具链时,特别是配合 Yarn 2 及以上版本使用时,开发者可能会遇到预设加载失败的问题。这个问题主要出现在使用 conventional-changelog-preset-loader 模块时,表现为无法加载 conventionalcommits 或 angular 等预设。
问题根源
问题的核心在于 conventional-changelog-preset-loader 将 conventional-changelog-conventionalcommits 放在了 devDependencies 中。在传统的 Node.js 模块解析机制下,这通常不会造成问题,因为 npm 和 Yarn 1.x 会扁平化依赖树。然而,Yarn 2 及以上版本采用了更严格的 PnP(Plug'n'Play)机制,这种机制不会自动提升依赖,导致运行时无法找到这些预设模块。
技术细节
Yarn 的 PnP 机制通过 .pnp.cjs 文件精确控制模块解析,避免了传统 node_modules 的冗余和不确定性。这种机制下,只有明确声明的依赖才能被访问,隐式依赖(即未在 package.json 中声明的依赖)将无法被解析。
在 Conventional Changelog 的场景中,conventional-changelog-preset-loader 动态加载预设(如 conventionalcommits 或 angular),但这些预设并未作为其正式依赖声明,导致了加载失败。
解决方案
开发者可以采用以下几种解决方案:
-
使用 Yarn 的 packageExtensions
在项目根目录的.yarnrc.yml中添加以下配置:packageExtensions: "conventional-changelog-preset-loader@^4.1.0": dependencies: conventional-changelog-conventionalcommits: ^7.0.2这种方法明确告诉 Yarn 需要为指定版本的 loader 添加额外依赖。
-
显式安装预设包
在项目中显式安装所需的预设包:yarn add conventional-changelog-conventionalcommits或者对于 angular 预设:
yarn add conventional-changelog-angular -
回退到 node_modules 链接器
对于暂时无法解决的问题,可以临时切换回传统的 node_modules 模式:nodeLinker: node-modules
长期建议
从项目维护角度,建议将预设包声明为可选 peerDependencies,这样既保持了灵活性,又解决了依赖解析问题。peerDependenciesMeta 可以标记这些依赖为可选,让用户根据需要选择安装特定预设。
总结
这个问题反映了现代包管理器演进过程中与传统 Node.js 模块解析机制的兼容性挑战。Yarn PnP 通过严格依赖控制提高了可靠性和性能,但也要求开发者更加精确地声明依赖关系。理解这一机制有助于开发者更好地处理类似问题,构建更健壮的前端工具链。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00