单目深度增强估计:BoostingMonocularDepth 指南
项目介绍
BoostingMonocularDepth 是一个在 SIGGRAPH 2024 上发表的研究成果,专注于无失真的尺度不变单目深度(SI-depth)估计。该方法不仅提供了一种几何上无扭曲的深度表示,还能通过引入一种新的尺度和移位不变深度模型来生成相比当前先进水平更多的细节,即便这种模型并非基于严格的几何原理。
本项目提供了源码实现,包括一种独立的合并操作器,使开发者能够使用任意一对单目深度估计结果进行双重估计。它支持不同的网络结构(如MiDaS-v3之外的其他网络)、手工编辑的深度图以及用于艺术创作的情况,同时也为CNN基的MDE研究者提供了一个快速测试其自定义网络双重估计能力的平台。
项目快速启动
要迅速开始使用BoostingMonocularDepth,确保您已安装必要的Python环境,并具备深度学习库如PyTorch的支持。下面是基本的快速启动步骤:
# 克隆项目到本地
git clone https://github.com/compphoto/BoostingMonocularDepth.git
# 进入项目目录
cd BoostingMonocularDepth
# 安装依赖(假设您使用的是conda环境)
conda env create -f environment.yml
conda activate BoostingDepthEnv
# 运行示例
python run.py --Final --max_res 2000 --data_dir YOUR_INPUT_PATH --output_dir YOUR_OUTPUT_PATH --depthNet 0
这里 --max_res 参数用于控制结果的最大分辨率,以平衡运行时间和输出质量。
应用案例和最佳实践
本项目适用于多种场景,从普通的图像增强到专业级的三维重建。最佳实践建议首先使用预训练模型对目标图片进行处理,然后根据需要调整最大分辨率参数以优化性能和速度。对于想要进一步定制化应用的开发者,可以探索集成不同的基础深度估计网络,或者利用本地强化策略针对特定区域提升精度。
典型生态项目
虽然该项目本身构建了一个独特的深度估计框架,但其应用生态可以扩展至任何需要高质量单目深度估计的领域,例如增强现实、自动驾驶车辆的实时环境感知、或是3D建模与视觉效果合成。由于其设计的灵活性,开发人员可以将其融入现有的计算机视觉工作流中,作为提升单一图像深度信息获取的关键组件。
此外,通过社区的贡献和适应,如结合LeReS等其他高级深度估计技术,这个项目的生态不断丰富,支持更多创新实践和边缘计算中的低功耗高效能解决方案。
请注意,实际使用时应详细阅读项目文档和GitHub页面上的最新指南,以获取最新的更新和最佳实践建议。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00