Stretchly应用在macOS多桌面环境中的使用技巧
2025-06-09 09:14:30作者:虞亚竹Luna
背景介绍
Stretchly是一款流行的休息提醒应用,帮助用户在工作时定期休息以保护视力健康。在macOS系统中,许多用户会使用"多桌面"(Spaces)功能来组织工作空间,将不同应用分配到不同桌面以提高工作效率。
问题现象
当用户在macOS系统中使用多个桌面时,发现Stretchly在全屏休息模式结束后,系统总是返回到第一个桌面,而不是用户当前工作的主桌面。例如,用户的主桌面是第三个桌面,但休息结束后会被强制跳转到第一个桌面。
技术原因分析
这个问题源于Electron框架(Stretchly使用的技术栈)与macOS多桌面系统的交互限制。Electron提供的API只能通过"在所有工作区显示"的设置来与桌面/工作区交互,但这种实现方式存在以下限制:
- 该功能可能无法正常工作或存在bug
- 在全屏模式下特别容易出现问题
- 即使尝试让系统返回之前使用的应用,效果也不理想
解决方案
对于遇到此问题的用户,推荐以下两种解决方案:
方案一:调整窗口模式
- 关闭全屏休息模式
- 通过高级设置调整休息窗口大小:
- 将窗口宽度比例设置为0.99
- 将窗口高度比例设置为0.99
- 使用窗口化模式替代全屏模式
这种配置可以模拟全屏效果,同时避免桌面切换问题。
方案二:使用非全屏模式
如果用户坚持使用全屏模式,目前没有完美的技术解决方案。建议考虑以下替代方案:
- 接受休息后返回第一个桌面的行为
- 使用macOS快捷键快速切换回工作桌面
- 考虑使用其他休息提醒工具
最佳实践建议
- 对于重度多桌面用户,推荐使用窗口模式而非全屏模式
- 可以调整窗口透明度等参数,使休息提醒既明显又不完全遮挡工作内容
- 定期检查Stretchly更新,未来版本可能会改善多桌面支持
总结
虽然Stretchly在全屏模式下存在与macOS多桌面系统的兼容性问题,但通过简单的配置调整,用户仍然可以获得良好的使用体验。理解这些技术限制并选择适当的配置方式,可以帮助用户在使用休息提醒功能的同时,保持高效的工作流程。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
644
149
Ascend Extension for PyTorch
Python
204
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
284
React Native鸿蒙化仓库
JavaScript
249
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
634
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873