Apache ECharts 中处理对象数组数据的两种方法
2025-05-01 08:38:01作者:董宙帆
Apache ECharts 是一款强大的数据可视化库,在实际开发中,我们经常会遇到需要将对象数组格式的数据(如 {"x": "时间戳", "y": 数值})转换为图表的需求。本文将详细介绍两种在 ECharts 中处理这类数据的有效方法。
方法一:使用 Dataset 特性
ECharts 提供了 dataset 组件,这是一种更现代、更灵活的数据处理方式。这种方法特别适合处理原始数据格式就是对象数组的情况。
实现步骤:
- 将对象数组直接作为 dataset 的 source
- 在系列中指定维度映射关系
示例代码:
option = {
dataset: {
source: [
{"x": "2024-07-18T00:00:00.000000Z", "y": 137.5},
{"x": "2024-07-18T01:00:00.000000Z", "y": 141},
// 更多数据...
]
},
xAxis: {
type: 'category',
// 指定使用 dataset 中的 x 字段
data: 'x'
},
yAxis: {
type: 'value'
},
series: {
type: 'line',
// 指定使用 dataset 中的 y 字段
encode: {
y: 'y'
}
}
};
优点:
- 代码简洁直观
- 保持原始数据结构不变
- 便于数据更新和维护
- 支持复杂的数据转换和映射
方法二:转换为二维数组
这是 ECharts 更传统的数据处理方式,通过将对象数组转换为二维数组来适配图表需求。
实现步骤:
- 使用数组的 map 方法转换数据结构
- 将转换后的数组直接用于 series 的 data
示例代码:
const originalData = [
{"x": "2024-07-18T00:00:00.000000Z", "y": 137.5},
{"x": "2024-07-18T01:00:00.000000Z", "y": 141},
// 更多数据...
];
const chartData = originalData.map(item => [item.x, item.y]);
option = {
xAxis: {
type: 'category'
},
yAxis: {
type: 'value'
},
series: {
type: 'line',
data: chartData
}
};
优点:
- 兼容性更好,支持所有 ECharts 版本
- 数据结构简单直接
- 适合简单的数据转换场景
两种方法的比较与选择建议
- 数据复杂度:对于简单数据结构,两种方法都可以;对于复杂数据结构,dataset 方法更优
- 维护性:dataset 方法在数据结构变化时更易于维护
- 性能:对于大数据量,二维数组方式可能性能稍好
- 功能需求:需要复杂数据映射时,dataset 提供更多功能
时间数据处理技巧
当处理时间数据时,还需要注意:
- 确保时间格式正确,ECharts 能自动识别常见时间格式
- 对于大量时间数据,考虑使用
axisPointer显示精确值 - 可以使用
dataZoom组件方便用户查看时间范围数据
总结
Apache ECharts 提供了灵活的数据处理方式,开发者可以根据项目需求选择最适合的方法。对于现代项目,推荐使用 dataset 方式,它提供了更好的可维护性和扩展性;而对于简单项目或需要兼容旧版本的情况,二维数组转换方式也是一个可靠的选择。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30