Spark NLP中KMeans聚类算法输入类型错误的解决方案
在使用Spark NLP进行文本聚类分析时,开发者可能会遇到一个常见的技术问题:当尝试将BERT嵌入向量输入到KMeans聚类算法时,系统抛出类型不匹配的异常。本文将深入分析这一问题的根源,并提供完整的解决方案。
问题现象分析
当开发者使用Spark NLP的BERT嵌入模型处理文本数据后,通过EmbeddingsFinisher转换器将嵌入向量输出为Spark ML可识别的格式,然后直接连接KMeans聚类算法时,会出现以下错误提示:
Column features must be of type equal to one of the following types:
[struct<type:tinyint,size:int,indices:array<int>,values:array<double>>,
array<double>, array<float>]
but was actually of type array<struct<type:tinyint,size:int,indices:array<int>,values:array<double>>>
根本原因
这个问题的核心在于KMeans算法与BERT嵌入输出之间的数据结构不匹配:
-
BERT嵌入的输出特性:BERT模型为文本中的每个token生成一个独立的嵌入向量。对于包含N个token的句子,BERT会输出N个768维的向量(假设使用标准BERT模型)。
-
KMeans的输入要求:Spark ML的KMeans算法要求每行数据必须包含一个单一的数值向量作为特征输入。这个向量可以是稀疏或稠密向量,但必须是单一向量。
-
数据结构差异:直接使用BERT嵌入的输出会得到一个数组结构,其中每个元素是一个token的向量表示,而KMeans期望的是一个扁平化的单一向量。
解决方案
要解决这个问题,我们需要在BERT嵌入和KMeans之间添加一个向量聚合步骤。以下是两种可行的解决方案:
方案一:使用SentenceEmbeddings转换器
Spark NLP提供了SentenceEmbeddings转换器,专门用于将token级别的嵌入聚合成句子级别的嵌入:
sentenceEmbeddings = SentenceEmbeddings() \
.setInputCols(["document", "embeddings"]) \
.setOutputCol("sentence_embeddings") \
.setPoolingStrategy("AVERAGE")
embeddingsFinisher = EmbeddingsFinisher() \
.setInputCols("sentence_embeddings") \
.setOutputCols("features") \
.setOutputAsVector(True)
pipeline = Pipeline(stages=[
documentAssembler,
regexTokenizer,
bertEmbedding_model,
sentenceEmbeddings,
embeddingsFinisher,
cluster_alg
])
这种方法通过对所有token向量进行平均池化,生成一个代表整个句子的单一向量。
方案二:手动处理嵌入向量
如果开发者需要更灵活的处理方式,可以在EmbeddingsFinisher之后添加自定义的向量处理步骤:
from pyspark.sql.functions import udf
from pyspark.ml.linalg import Vectors, VectorUDT
import numpy as np
# 定义UDF将数组向量转换为单一向量
def average_vectors(vectors):
if not vectors:
return Vectors.dense([0.0]*768)
avg = np.mean([v.toArray() for v in vectors], axis=0)
return Vectors.dense(avg)
average_vectors_udf = udf(average_vectors, VectorUDT())
# 在管道中使用
data = embeddingsFinisher.transform(data)
data = data.withColumn("features", average_vectors_udf("features"))
技术要点总结
-
理解模型输出:在使用任何NLP嵌入模型前,必须清楚了解其输出数据结构。
-
算法输入要求:机器学习算法对输入数据结构有特定要求,必须确保数据转换正确。
-
Spark NLP转换器:合理利用Spark NLP提供的各种转换器可以简化数据处理流程。
-
性能考量:对于大规模数据集,使用内置转换器通常比自定义UDF更高效。
通过以上分析和解决方案,开发者可以顺利地将BERT嵌入与KMeans聚类算法结合使用,实现高效的文本聚类分析。在实际应用中,还可以根据具体需求调整池化策略或尝试其他聚合方法,如最大池化或注意力机制等,以获得更好的聚类效果。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00