Parseable项目中的Arrow Flight协议查询功能解析
概述
Parseable作为一个现代化的日志分析平台,在1.2版本中引入了对Arrow Flight协议的支持,这为数据查询提供了更高效的传输方式。Arrow Flight是基于Apache Arrow的高性能客户端-服务器框架,专为大数据场景设计,能够显著提升数据传输效率。
Arrow Flight在Parseable中的实现
Parseable通过设置环境变量P_FLIGHT_PORT来启用Arrow Flight服务端点,默认情况下服务会监听指定端口。这一功能为开发者提供了多种连接方式的可能性,包括通过Arrow Flight JDBC驱动、adbc_driver_flightsql或pyarrow.flight等客户端库进行连接。
常见连接问题与解决方案
在实际使用中,开发者可能会遇到认证相关的问题,特别是当使用以下错误消息时:
NotSupportedError: NOT_IMPLEMENTED: [FlightSQL] handshake is disabled in favour of direct authentication and authorization
这表明Parseable禁用了传统的握手认证方式,转而采用直接认证授权机制。正确的做法是使用Basic认证方式,将用户名和密码组合后进行Base64编码,格式为"Basic <Base64编码的用户名:密码>"。
使用示例
对于Python开发者,可以通过pyarrow.flight库与Parseable的Arrow Flight端点交互。需要注意的是,用户需要确保拥有适当的权限才能访问数据。在最新版本中,Parseable控制台也将使用这一API进行查询,从而提升用户体验。
开发建议
对于希望提前体验这一功能的开发者,可以使用Parseable的edge标签Docker镜像(parseable/parseable:edge),这个镜像始终指向主分支的最新提交。不过需要注意,由于这是开发版本,可能会包含未经完全测试的功能变更。
性能考量
虽然Arrow Flight协议本身设计为高性能传输机制,但实际查询响应时间还会受到底层存储系统(如S3)性能的影响。开发者在使用时应考虑这一因素,特别是在大规模数据查询场景下。
通过正确配置和使用Arrow Flight协议,开发者可以充分利用Parseable提供的高效数据查询能力,为日志分析和数据处理应用带来显著的性能提升。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00