TypeBox项目中处理OpenAI兼容的递归JSON Schema方案
2025-06-06 07:58:28作者:劳婵绚Shirley
在TypeBox项目中,开发者们经常需要处理复杂的JSON Schema定义,特别是当这些Schema需要与OpenAI的API兼容时,会遇到一些特殊挑战。本文将深入探讨如何优雅地解决这些问题。
问题背景
OpenAI API对JSON Schema有两个主要限制:
- 不允许在根级别使用
anyOf - 不支持命名/相对引用,必须通过根级别的
$defs来实现 
这些限制使得在使用TypeBox定义递归结构时,需要采用特殊的技术手段来确保生成的Schema与OpenAI兼容。
递归结构的传统定义方式
在TypeBox中,我们通常使用Type.Recursive来定义递归结构。例如:
const Element = <Node extends TSchema>(Node: Node) => Type.Object({
  type: Type.Literal('Element'),
  children: Type.Array(Node)
})
const Carousel = <Node extends TSchema>(Node: Node) => Type.Object({
  type: Type.Literal('Carousel'),
  include_arrows: Type.Boolean(),
  min_width: Type.String(),
  children: Type.Array(Node)
})
export const Node = Type.Recursive(Node => Type.Union([
  Element(Node),
  Carousel(Node)
]), {
  discriminantKey: 'type'
})
这种方式生成的Schema虽然有效,但不完全符合OpenAI的要求,因为它不使用$defs结构。
使用Module原型实现$defs结构
TypeBox提供了一个实验性的Module原型,可以创建符合OpenAI要求的$defs结构:
import { Module, ModuleRef } from './prototypes/module'
const Types = Module({
  Element: Type.Object({
    type: Type.Literal('Element'),
    children: Type.Array(ModuleRef('Node'))
  }),
  
  Carousel: Type.Object({
    type: Type.Literal('Carousel'),
    include_arrows: Type.Boolean(),
    min_width: Type.String(),
    children: Type.Array(ModuleRef('Node'))
  }),
  
  Node: Type.Union([
    ModuleRef('Element'),
    ModuleRef('Carousel')
  ], {
    discriminantKey: 'type'
  })
})
const Element = Types.Import('Element')
const Carousel = Types.Import('Carousel')
const Node = Types.Import('Node')
Module原型的工作原理是:
- 创建一个包含多个相关类型的模块
 - 使用
ModuleRef实现类型间的相互引用 - 通过
Import方法生成最终的Schema,其中包含$defs结构 
自定义转换工具
如果不想使用实验性的Module原型,开发者也可以创建自定义转换工具,将TypeBox类型转换为OpenAI兼容的JSON Schema:
function ToRootDefs<T extends TSchema>(schema: T): T {
  const defs: Record<string, TSchema> = {}
  const newSchema = replace_refs(schema, defs)
  return {
    ...newSchema,
    $defs: defs,
  } as unknown as T & { $defs: Record<string, TSchema> }
}
这个工具会:
- 遍历Schema中的所有递归引用
 - 将递归结构提取到
$defs中 - 将引用替换为
#/$defs/[recursive_schema_id]格式 
实际应用示例
在实际应用中,我们可以这样使用转换后的Schema与OpenAI API交互:
const res = await open_ai_client.chat.completions.create({
    model,
    messages: [...],
    response_format: {
        type: "json_schema",
        json_schema: ToRootDefs(Node)
    }
})
总结
TypeBox提供了多种方式来处理复杂的递归结构定义,特别是针对OpenAI API的特殊要求。开发者可以根据项目需求选择:
- 使用标准的
Type.Recursive(简单但不完全兼容) - 采用实验性的Module原型(完全兼容但可能有功能限制)
 - 实现自定义转换工具(灵活但需要额外开发)
 
随着TypeBox的发展,未来版本可能会原生支持$defs结构,进一步简化这一过程。目前,开发者可以根据项目实际情况选择最适合的方案。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446