Moonshot 开源项目使用指南
1. 项目介绍
Moonshot 是一个简单且模块化的工具,旨在评估和红队(Red-Teaming)任何大型语言模型(LLM)应用。该项目由 AI Verify Foundation 开发,旨在帮助 AI 开发者、合规团队和 AI 系统所有者评估 LLM 和 LLM 应用。Moonshot 提供了多种接口,包括用户友好的 Web UI、交互式命令行界面(CLI)以及无缝集成到 MLOps 工作流的库 API 和 Web API。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统满足以下要求:
- Python 3.11(尚未在更高版本上测试)
- Git
- 虚拟环境(可选,但推荐)
- Node.js 20.11.1 LTS 及以上版本(如果计划安装 Web UI)
2.2 安装步骤
2.2.1 创建虚拟环境
python -m venv venv
source venv/bin/activate
2.2.2 安装 Moonshot
pip install "aiverify-moonshot[all]"
2.2.3 克隆并安装测试资产和 Web UI
python -m moonshot -i moonshot-data -i moonshot-ui
2.3 运行 Moonshot Web UI
python -m moonshot web
打开浏览器并访问 http://localhost:3000/,您将看到 Moonshot Web UI。
2.4 运行 Moonshot CLI
python -m moonshot cli interactive
3. 应用案例和最佳实践
3.1 使用 Moonshot 进行 LLM 评估
Moonshot 提供了多种基准测试,用于评估 LLM 应用在不同方面的表现,如语言和上下文理解、质量和信任与安全。通过 Moonshot,您可以轻松运行这些基准测试,并生成详细的测试报告。
3.2 红队测试
红队测试是一种对抗性测试方法,旨在发现 LLM 应用中的潜在漏洞。Moonshot 提供了强大的红队测试功能,帮助您识别和修复 LLM 应用中的安全问题。
3.3 自定义测试
Moonshot 允许您创建自定义测试和基准,以满足特定需求。您可以根据自己的数据集和评估标准,定制测试流程,确保 LLM 应用在实际使用中的可靠性和安全性。
4. 典型生态项目
4.1 AI Verify Foundation
AI Verify Foundation 是一个致力于推动 AI 系统透明度和可信度的组织。Moonshot 是该基金会开发的核心工具之一,旨在帮助全球的 AI 开发者和研究者评估和改进他们的 LLM 应用。
4.2 MLCommons
MLCommons 是一个全球性的机器学习社区,致力于推动机器学习技术的标准化和普及。Moonshot 与 MLCommons 合作,开发了全球对齐的安全基准,用于评估 LLM 的安全性和可靠性。
4.3 OpenAI、Anthropic、HuggingFace
Moonshot 支持与多个流行的 LLM 提供商(如 OpenAI、Anthropic、HuggingFace)的集成,您可以通过提供 API 密钥,直接在 Moonshot 中测试这些提供商的模型。
通过以上步骤,您可以快速上手并充分利用 Moonshot 的功能,评估和改进您的 LLM 应用。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00