Narwhals v1.24.1 发布:增强多后端兼容性与表达式处理能力
Narwhals 是一个专注于为不同数据处理后端提供统一接口的 Python 库,它允许开发者使用相同的 API 操作多种数据处理引擎,如 PySpark、DuckDB 等。最新发布的 v1.24.1 版本带来了一系列改进和新特性,进一步提升了库的兼容性和易用性。
核心功能增强
本次更新最值得关注的是对 SQLFrame 的初步支持。SQLFrame 是另一个 Python 数据操作库,Narwhals 开始为其提供兼容层,这意味着开发者未来可以在 SQLFrame 后端上使用 Narwhals 的统一 API。虽然当前支持还处于"静默"阶段,但这一变化为未来扩展多后端支持奠定了基础。
在表达式处理方面,v1.24.1 改进了 PySpark 的字面量处理机制,使其更加健壮。同时新增了 selectors.matches 方法,为数据选择操作提供了更灵活的匹配能力。对于 DuckDB 用户,新版本增强了对标量运算的支持,并优化了 IPython 环境下的显示宽度,提升了交互体验。
内部架构优化
开发团队对代码库进行了多项内部重构,降低了代码重复率。特别是重构了 name 命名空间的处理逻辑,使代码结构更加清晰。此外,移除了 DuckDBExpr 和 SparkLikeExpr 中未使用的 _depth 属性,简化了表达式类的实现。
类型系统也得到了加强,项目现在明确包含了 "typing :: typed" 分类器,表明其对类型提示的支持。函数参数处理也更加规范,在 evaluate_into_exprs 方法中使用了位置参数限定,提高了 API 的明确性。
开发者体验改进
对于使用 IPython 或 Jupyter Notebook 进行数据分析的用户,新版本增加了显示宽度,使得在交互式环境中查看数据更加方便。这些看似微小的改进实际上显著提升了日常开发体验。
总体而言,Narwhals v1.24.1 虽然是一个小版本更新,但在多后端支持、表达式处理和代码质量方面都做出了有价值的改进,为开发者提供了更稳定、更统一的数据操作体验。这些变化体现了项目团队对代码质量的持续关注和对多后端兼容性的长期投入。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00