matplotlib/mplfinance 项目中关于PNF ATR Boxsize的技术解析
点状图(PnF)中ATR盒子大小的设计与实现
在金融数据可视化领域,点状图(Point and Figure,简称PnF)是一种独特的技术分析方法。matplotlib/mplfinance作为Python中强大的金融数据可视化库,其PnF实现中的ATR(平均真实波幅)盒子大小计算方式值得深入探讨。
ATR盒子大小的基本概念
ATR盒子大小是基于平均真实波幅来确定PnF图表中每个"盒子"代表的价位区间。与固定盒子大小或百分比盒子大小不同,ATR盒子大小能够动态反映市场波动性。
实现原理
-
ATR计算周期:mplfinance默认使用最近14个周期计算ATR,这符合金融技术分析中的常见实践。用户也可以选择使用全部数据('total')来计算ATR。
-
盒子大小的稳定性:在单次PnF图表绘制过程中,盒子大小应保持恒定。动态调整盒子大小会导致图表难以解读,失去技术分析的一致性。
-
多维度考量:除了ATR方法外,mplfinance还支持固定值和百分比两种盒子大小确定方式,满足不同分析需求。
技术实现要点
-
数据窗口选择:ATR计算默认采用滑动窗口机制,只考虑最近N期数据,确保反映当前市场状况。
-
异常处理:当市场波动剧烈时,ATR计算的盒子大小可能过大或过小,这时应考虑结合其他方法确定合理区间。
-
参数调优:用户可以通过调整ATR计算周期来获得不同灵敏度的分析结果,短周期更敏感,长周期更平滑。
最佳实践建议
-
对于波动性较大的资产,建议结合ATR盒子大小和百分比盒子大小进行验证。
-
在长期分析中,可以考虑使用全部数据计算ATR('total'参数),避免近期数据主导盒子大小。
-
不同盒子大小会显著影响交易信号频率,应根据实际交易策略选择合适的盒子大小计算方法。
mplfinance的PnF实现提供了灵活的盒子大小配置选项,使技术分析人员能够根据市场特性和个人偏好进行定制化分析。理解这些底层机制有助于更有效地利用这一强大工具进行市场分析。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00