CKIPtagger 开源项目教程
2024-08-10 12:46:17作者:申梦珏Efrain
1. 项目的目录结构及介绍
CKIPtagger 是一个用于中文分词、词性标注和命名实体识别的工具。以下是其主要目录结构及其介绍:
ckiptagger/
├── data/
│ ├── char_dict/
│ ├── entity_dict/
│ ├── segment/
│ ├── pos/
│ └── ws/
├── ckiptagger/
│ ├── data.py
│ ├── __init__.py
│ ├── module.py
│ ├── segment_dll.py
│ ├── segment.py
│ ├── tag_dll.py
│ ├── tag.py
│ ├── utils.py
│ └── ws_dll.py
├── examples/
│ ├── example_batch.py
│ ├── example_custom_dictionary.py
│ ├── example_gpu.py
│ ├── example_http_service.py
│ ├── example_memory_lock.py
│ ├── example_multi_process.py
│ ├── example_server.py
│ └── example_single.py
├── README.md
├── requirements.txt
└── setup.py
data/: 包含模型数据文件,如字典、分词模型等。ckiptagger/: 核心代码目录,包含各种模块和工具函数。examples/: 示例代码,展示如何使用 CKIPtagger 进行分词、词性标注等操作。README.md: 项目说明文档。requirements.txt: 项目依赖文件。setup.py: 安装脚本。
2. 项目的启动文件介绍
CKIPtagger 的启动文件主要是 examples/ 目录下的示例脚本。以下是一些关键的启动文件及其功能:
example_single.py: 展示如何进行单个文本的分词、词性标注和命名实体识别。example_batch.py: 展示如何批量处理文本。example_http_service.py: 展示如何启动一个 HTTP 服务,通过网络接口提供分词服务。
以 example_single.py 为例,其主要代码如下:
from ckiptagger import data_utils, construct_dictionary, WS, POS, NER
# 下载数据
data_utils.download_data_gdown("./data")
# 初始化模型
ws = WS("./data")
pos = POS("./data")
ner = NER("./data")
# 分词、词性标注和命名实体识别
sentence_list = ["某知名人士今将执行某医疗程序,却突然爆出自己20年前遭某体育媒体封杀,他因不愿配合不实报道,拒绝采访某体育事件,导致被电视台冷落。"]
word_sentence_list = ws(sentence_list)
pos_sentence_list = pos(word_sentence_list)
entity_sentence_list = ner(word_sentence_list, pos_sentence_list)
# 输出结果
print(word_sentence_list)
print(pos_sentence_list)
print(entity_sentence_list)
3. 项目的配置文件介绍
CKIPtagger 的配置主要通过代码进行,没有独立的配置文件。主要的配置包括数据路径、自定义字典等。以下是一些常见的配置示例:
数据路径配置
from ckiptagger import WS, POS, NER
ws = WS("./data")
pos = POS("./data")
ner = NER("./data")
自定义字典配置
from ckiptagger import construct_dictionary
# 自定义字典
dictionary = {"某知名人士": 1, "某体育媒体": 1}
custom_dictionary = construct_dictionary(dictionary)
# 使用自定义字典
word_sentence_list = ws(sentence_list, coerce_dictionary=custom_dictionary)
通过以上配置,可以灵活地调整 CKIPtagger 的行为,以适应不同的需求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1